牛吃草问题

假设地球上的新生资源按恒定速度增长。照此测算,地球上现有资源加上新生资源可供 x 亿人生活 a 年,或供 y 亿人生活 b 年。

为了能够实现可持续发展,避免资源枯竭,地球最多能够养活多少亿人?

在做此类编程题时不清楚要求什么,题中所给的那几个量对问题的求解有什么帮助,在深入了解牛吃草问题后得知:资源是在不断增生的,所以可根据题意进行方程组的确立:

设地球资源自然增长率为r,原始资源为P;

则 x*a=P+r*a和y*b=P+r*b;

求得 r=(xa-yb)/(a-b)

在确定z的值时又遇到如下问题

为什么确定z的值不考虑原始资源P,得解:

可持续发展只依赖资源再生速度 r

  • 原始资源 P 是一个固定值,它会被逐渐消耗。

  • 新生资源 rr每年新增的资源,只要 z≤r,资源就不会枯竭。

  • 因此,最大可持续人口 z仅由 r 决定,与 R无关。

总结:总的来说是对该问题的理解不够深刻。

正确代码:

#include <stdio.h>

int main() {
	int x, a, y, b;
	double z;
	scanf("%d %d %d %d", &x, &a, &y, &b);
	z =(double)(y * b-x * a ) / (b-a);
	printf("%.2f", z);
	return 0;
}

瑕疵代码:

#include <stdio.h>

int main() {
	int x, a, y, b;
	double z;
	scanf("%d %d %d %d", &x, &a, &y, &b);
	z =(y * b-x * a ) / (b-a);
	printf("%.2f", z);
	return 0;
}

改进方案:

  • z 是 double 不会自动让 / 变成浮点除法,因为 / 的类型取决于它的操作数。

  • 如果 (y*b - x*a) 和 (b - a) 都是 int,就会发生整数除法,即使赋值给 double 也晚了。

  • 解决方案

    • 用 (double) 强制转换。

    • 或用 * 1.0 让其中一个操作数变成 double

  • 推荐 * 1.0 写法,简洁且避免错误。

例如:输入2 3 3 5                                     改进后

           y * b-x * a=9                                   =9.0

           b-a=2                                             =2.0

           (y * b-x * a ) / (b-a)=9/2=4             =4.5

           z=4.00                                           =  4.50

  • z值的公式错误:虽然(x * a - y * b) / (a - b)与(y * b-x * a ) / (b-a);在数学上等价,但为了避免错误应写为更变准的方式。

知识点:

  • 强制转 double 不会固定小数位数,只是确保计算时使用浮点运算。

  • 输出时可用 %.nf 控制显示的小数位数

  • 浮点数有精度限制,必要时需考虑高精度计算方案。

  double a = 0.1 + 0.2;  // 实际可能是 0.30000000000000004

吃草问题是一种经典的数学建模题,在计算机科学领域,尤其是算法设计和数据结构学习过程中也经常会被提到。下面我们就基于C++语言的特点来讲解如何解决这类问题。 ### 吃草问题简介 假设有一片草地,其上不断生长着青草;同时有若干头持续地在这块地上进食。已知每头每天消耗一定量的草,并且这片草地每天新增长固定数量的新鲜牧草。我们需要确定的是如果给定初始草存量、每日增草量以及每头日均食草量等条件后,需要多少天才能将所有现存及新生之草完全吃完等问题的答案。 此类题目通常会包含以下几个要素: - 初始时的总草量 \(M\) - 每单位时间内的自然增长草量 \(r\) (可以为负值表示减少) - 单位时间内一头能吃的草的数量 \(e\) - 当前共有几只参与进食活动 #### 使用C++解决问题的基本步骤: 1. **输入处理**:首先读入相关的参数包括但不限于上述四种基本因素。 2. **计算核心公式推导** - 若仅考虑静态情况即忽略掉后续产生的新草,则所需时间为\(T = \lceil M / n * e\rceil\) 其中n代表当前存在的数; - 而动态情形下综合考量了原有存量加上期间生成部分后的总体积变化率应等于全体牲畜总的消费速率才会停止进化过程达到平衡点故而得到方程组形式求解未知变量如最终稳定状态下的群体规模或是耗尽全部资源所需的时刻长度等等信息内容。 ```cpp #include <iostream> using namespace std; int main(){ double m,r,e,n; cout << "请输入原始草量m:" ; cin >> m; cout << "请输入每天增加草量r(如果是减少则填入负数):" ; cin >> r ; cout << "请输入每头一天吃草量e:" ; cin >> e ; cout << "请输入现有的数量n:" ; cin >> n ; if(r >=0 && e*n <=r){ //永远不会吃完的情况 cout<<"由于草的增长速度大于等于群食用的速度,所以永远不可能把所有的草都吃完."<<endl; }else{ int days =(int)(m/(double)(n*e-r)); if(m%(n*e-r)!=0)days+=1;//向上取整操作 cout << "预计将在第"<<days <<"天结束之前或当天恰好把草场的所有草吃完."<< endl; } return 0;} ``` 通过以上程序段落展示了简单的实现思路其中需要注意边界条件例如当草原不存在额外再生能力也就是\(r<=0\)并且实际需求超出供给限制时候应当特别判断避免出现错误结果输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值