AIGC 领域 AI 写作的智能推荐系统构建

AIGC领域AI写作的智能推荐系统构建

关键词:AIGC、智能推荐系统、自然语言处理、深度学习、协同过滤、内容生成、用户画像

摘要
在人工智能生成内容(AIGC)快速发展的背景下,构建高效的AI写作智能推荐系统成为提升内容创作效率和质量的关键。本文从系统架构设计、核心算法原理、数学模型构建、项目实战等多个维度,深入解析如何将自然语言处理(NLP)与推荐算法相结合,实现对用户写作需求的精准理解和个性化内容推荐。通过详细的技术实现步骤和代码示例,展示如何整合用户行为分析、语义匹配模型和生成式AI技术,构建具备智能推荐能力的AIGC写作平台。同时探讨该系统在内容创作、教育、营销等领域的实际应用场景,以及未来发展面临的技术挑战。

1. 背景介绍

1.1 目的和范围

随着AIGC技术的普及,基于AI的写作工具(如GPT、Notion AI)已广泛应用于文案生成、代码辅助、学术写作等场景。然而,现有工具普遍缺乏针对用户个性化需求的精准推荐能力,导致生成内容与用户真实需求存在偏差。本文旨在构建一个融合推荐系统与自然语言处理的智能框架,解决以下核心问题:

  • 如何高效捕捉用户写作意图和上下文语义?
  • 如何结合历史行为数据实现个性化内容推荐?
  • 如何将推荐结果与生成模型无缝对接,提升内容生成质量?

1.2 预期读者

本文适合以下人群:

  • 从事AIGC技术研发的算法工程师和开发者
  • 对智能推荐系统在自然语言处理领域应用感兴趣的研究者
  • 希望构建个性化写作工具的产品经理和技术决策者

1.3 文档结构概述

本文从基础概念入手,逐步解析系统架构、算法原理、数学模型、实战案例和应用场景,最后总结技术趋势与挑战。核心内容包括:

  1. 推荐系统与AIGC的技术融合原理
  2. 基于深度学习的语义匹配模型实现
  3. 结合协同过滤与内容理解的混合推荐算法
  4. 完整的系统开发流程和代码实现示例

1.4 术语表

1.4.1 核心术语定义
  • AIGC(AI-Generated Content):通过人工智能技术自动生成的文本、图像、视频等内容。
  • 智能推荐系统:通过分析用户数据,预测用户偏好并推荐相关内容或服务的系统。
  • 语义匹配:判断文本之间语义相关性的技术,用于理解用户需求与候选内容的匹配度。
  • 用户画像:通过数据挖掘构建的用户虚拟模型,包含兴趣、行为、偏好等特征。
1.4.2 相关概念解释
  • 协同过滤(Collaborative Filtering):基于用户群体行为数据的推荐算法,分为基于记忆和模型的两类。
  • 自然语言处理(NLP):研究计算机与人类语言交互的技术,包括分词、语义分析、生成等。
  • 混合推荐模型:结合多种推荐策略(如内容-based、协同过滤、深度学习)的综合模型。
1.4.3 缩略词列表
缩写全称
NLP自然语言处理(Natural Language Processing)
CF协同过滤(Collaborative Filtering)
CNN卷积神经网络(Convolutional Neural Network)
RNN循环神经网络(Recurrent Neural Network)
TransformerTransformer架构(自注意力模型)

2. 核心概念与联系

2.1 AIGC写作系统的核心组件

AIGC写作的智能推荐系统需整合三大核心模块:用户需求理解个性化推荐引擎内容生成引擎。其架构示意图如下:

用户输入
自然语言处理模块
需求解析
用户画像数据库
候选内容库
混合推荐模型
推荐结果排序
内容生成引擎
输出个性化内容
2.1.1 用户需求理解模块
  • 功能:将用户输入的写作需求(如“撰写一篇科技博客引言”)转化为结构化语义特征。
  • 技术
    • 命名实体识别(NER)提取关键信息(如领域、体裁、风格)
    • 文本向量化(Word2Vec、BERT)生成需求语义向量
    • 意图分类(基于LSTM/Transformer的文本分类模型)判断写作类型
2.1.2 个性化推荐引擎
  • 功能:结合用户历史行为和实时需求,从候选内容库中筛选最相关的写作模板、素材或生成参数。
  • 技术
    • 协同过滤:利用用户-内容交互数据(如点击、收藏、评分)挖掘群体偏好
    • 内容建模:通过TF-IDF、BERT等模型提取内容语义特征
    • 混合推荐:融合协同过滤与内容特征,解决冷启动和稀疏性问题
2.1.3 内容生成引擎
  • 功能:根据推荐结果生成符合用户需求的具体内容。
  • 技术
    • 生成式模型(GPT、T5):基于推荐的语义特征和风格参数生成文本
    • 条件控制:通过控制生成模型的输入参数(如温度、最大长度)调整输出风格

2.2 推荐系统与NLP的技术融合点

  1. 语义级推荐:传统推荐系统基于关键词匹配,而语义级推荐通过NLP技术理解文本深层含义,例如区分“苹果”作为水果或品牌的不同语境。
  2. 上下文感知:结合用户输入的上下文(如历史对话、写作进度)动态调整推荐策略,例如在用户撰写邮件时推荐相关的礼貌用语模板。
  3. 生成式推荐:将推荐结果作为生成模型的条件输入,实现“推荐-生成”一体化,例如根据推荐的营销文案结构生成具体产品描述。

3. 核心算法原理 & 具体操作步骤

3.1 基于Transformer的语义匹配模型

3.1.1 算法原理

该模型用于计算用户需求与候选内容的语义相似度,核心结构包括:

  1. 输入层:将用户需求文本和候选内容文本分别编码为Token序列
  2. 编码层:使用预训练的BERT模型生成上下文相关的词向量
  3. 交互层:通过点积计算两个文本向量的余弦相似度
  4. 输出层:通过全连接层输出匹配得分
3.1.2 Python代码实现
import torch  
from transformers import BertTokenizer, BertModel  

class SemanticMatchingModel(torch.nn.Module):  
    def __init__(self, pretrained_model='bert-base-uncased'):  
        super(SemanticMatchingModel, self).__init__()  
        self.bert = BertModel.from_pretrained(pretrained_model)  
        self.dropout = torch.nn.Dropout(0.1)  
        self.classifier = torch.nn.Linear(768, 1)  # BERT输出维度为768  

    def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2):  
        # 编码第一个文本  
        outputs1 = self.bert(input_ids=input_ids1, attention_mask=attention_mask1)  
        pooled_output1 = outputs1.pooler_output  # <[BOS_never_used_51bce0c785ca2f68081bfa7d91973934]> token的输出  
        pooled_output1 = self.dropout(pooled_output1)  

        # 编码第二个文本  
        outputs2 = self.bert(input_ids=input_ids2, attention_mask=attention_mask2)  
        pooled_output2 = outputs2.pooler_output  
        pooled_output2 = self.dropout(pooled_output2)  

        # 计算余弦相似度  
        cos = torch.nn.CosineSimilarity(dim=1)  
        similarity = cos(pooled_output1, pooled_output2)  
        similarity = similarity.unsqueeze(1)  

        # 分类器输出匹配得分  
        score = self.classifier(torch.cat([pooled_output1, pooled_output2, similarity], dim=1))  
        return score  

3.2 混合推荐算法:协同过滤+语义特征

3.2.1 算法原理

该模型结合用户行为数据(协同过滤)和内容语义特征(NLP),解决传统协同过滤的冷启动问题:

  1. 用户嵌入:通过用户历史交互数据训练用户隐向量 ( U \in \mathbb{R}^{m \times k} )
  2. 内容嵌入:通过BERT生成内容语义向量 ( C \in \mathbb{R}^{n \times k} )
  3. 混合预测:计算用户-内容评分预测 ( \hat{r}_{ui} = U_u^T C_i + b_u + b_i ),其中 ( b_u, b_i ) 为用户和内容偏置项
3.2.2 训练步骤
  1. 数据预处理:将用户点击、评分数据转换为三元组 ( (用户ID, 内容ID, 评分) )
  2. 特征工程:对内容文本进行BERT编码,生成固定维度的语义向量
  3. 模型训练:使用随机梯度下降(SGD)最小化均方误差(MSE)损失函数
    [
    L = \sum_{(u,i) \in D} (r_{ui} - \hat{r}_{ui})^2 + \lambda(|U|_F^2 + |C|_F^2 + b_u^2 + b_i^2)
    ]
    其中 ( D ) 为训练数据集,( \lambda ) 为正则化参数
3.2.3 Python代码实现
import numpy as np  
import torch  
from torch.utils.data import Dataset, DataLoader  

class HybridRecommendationDataset(Dataset):  
    def __init__(self, user_ids, content_ids, scores, content_embeddings):  
        self.user_ids = torch.LongTensor(user_ids)  
        self.content_ids = torch.LongTensor(content_ids)  
        self.scores = torch.FloatTensor(scores)  
        self.content_embeddings = torch.FloatTensor(content_embeddings)  

    def __len__(self):  
        return len(self.user_ids)  

    def __getitem__(self, idx):  
        return self.user_ids[idx], self.content_ids[idx], self.scores[idx], self.content_embeddings[self.content_ids[idx]]  

class HybridRecommendationModel(torch.nn.Module):  
    def __init__(self, num_users, embed_dim, content_embeddings):  
        super(HybridRecommendationModel, self).__init__()  
        self.user_embedding = torch.nn.Embedding(num_users, embed_dim)  
        self.content_embedding = torch.nn.Embedding.from_pretrained(content_embeddings, freeze=True)  
        self.user_bias = torch.nn.Embedding(num_users, 1)  
        self.content_bias = torch.nn.Embedding(content_embeddings.shape[0], 1)  

    def forward(self, user_ids, content_ids, content_embeds):  
        u_embed = self.user_embedding(user_ids)  
        c_embed = content_embeds  # 直接使用预训练的内容嵌入  
        user_bias = self.user_bias(user_ids)  
        content_bias = self.content_bias(content_ids)  
        score = (u_embed * c_embed).sum(dim=1, keepdim=True) + user_bias + content_bias  
        return score.squeeze()  

4. 数学模型和公式 & 详细讲解 & 举例说明

4.1 文本向量化模型:Word2Vec与BERT对比

4.1.1 Word2Vec的Skip-Gram模型
  • 目标函数:最大化上下文词与中心词的共现概率
    [
    \max_{\theta} \frac{1}{T} \sum_{t=1}^T \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j} | w_t; \theta)
    ]
    其中 ( p(w_j | w_i) = \frac{\exp(u_j^T v_i)}{\sum_{k=1}^V \exp(u_k^T v_i)} ),( v_i ) 为中心词向量,( u_j ) 为上下文词向量。

  • 举例:输入文本“AI写作工具”,生成“AI”、“写作”、“工具”的词向量,通过余弦相似度计算“写作”与“创作”的相关性。

4.1.2 BERT的上下文嵌入
  • 预训练任务

    1. 掩码语言模型(MLM):随机遮盖部分Token,预测原词
    2. 下一句预测(NSP):判断两个句子是否连续
  • 输出向量:每个Token生成包含上下文信息的向量 ( \mathbf{h}_i^L = \text{TransformerEncoder}(\mathbf{h}0, \ldots, \mathbf{h}{n-1}) ),其中 ( L ) 为编码层数。

4.2 推荐系统评分预测模型

4.2.1 矩阵分解(MF)模型
  • 模型假设:用户-内容评分矩阵 ( R ) 可分解为用户隐向量矩阵 ( U ) 和内容隐向量矩阵 ( V ) 的乘积,即 ( \hat{R} = U V^T )。

  • 损失函数
    [
    L = \sum_{(u,i) \in R} (r_{ui} - u_u^T v_i)^2 + \lambda(|u_u|^2 + |v_i|^2)
    ]

  • 举例:用户A对内容X评分为4分,通过矩阵分解得到用户A的隐向量 ( u_A = [0.8, -0.3] ),内容X的隐向量 ( v_X = [0.6, 0.5] ),预测评分为 ( 0.8*0.6 + (-0.3)*0.5 = 0.33 ),需通过训练调整向量使预测值接近真实评分。

4.2.2 混合模型公式推导

结合内容语义特征 ( c_i ) 和协同过滤隐向量 ( u_u, v_i ),混合模型的评分预测公式为:
[
\hat{r}_{ui} = \alpha (u_u^T v_i) + (1-\alpha) (w^T [u_u; c_i; v_i; c_i])
]
其中 ( \alpha ) 为权重参数,用于平衡协同过滤和内容特征的贡献。

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

5.1.1 硬件要求
  • CPU:Intel i7或更高(推荐使用GPU加速,如NVIDIA RTX 3090)
  • 内存:32GB以上
  • 存储:50GB以上SSD(用于存储预训练模型和数据集)
5.1.2 软件依赖
# 安装Python包  
pip install torch==2.0.1 transformers==4.28.1 numpy==1.23.5 pandas==1.5.3  
pip install flask==2.2.2 surprise==1.1.1 scikit-learn==1.2.2  
5.1.3 数据集准备
  • 用户行为数据:包含用户ID、内容ID、点击时间、评分(示例数据格式如下)
    用户ID内容ID评分点击时间
    U001C0014.52023-10-01
  • 内容文本数据:包含内容ID、标题、正文、标签

5.2 源代码详细实现和代码解读

5.2.1 数据预处理模块
import pandas as pd  
from transformers import BertTokenizer  

def preprocess_data(user_data_path, content_data_path):  
    # 加载数据  
    user_df = pd.read_csv(user_data_path)  
    content_df = pd.read_csv(content_data_path)  

    # 文本清洗(去除特殊字符、小写转换)  
    content_df['clean_text'] = content_df['title'] + ' ' + content_df['body']  
    content_df['clean_text'] = content_df['clean_text'].apply(lambda x: re.sub(r'[^a-zA-Z0-9\s]', '', x.lower()))  

    # BERT分词器初始化  
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')  
    # 生成内容嵌入(此处简化为使用BERT的<[BOS_never_used_51bce0c785ca2f68081bfa7d91973934]>向量)  
    content_embeddings = []  
    for text in content_df['clean_text']:  
        inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)  
        with torch.no_grad():  
            outputs = model(**inputs)  
        content_embeddings.append(outputs.pooler_output.numpy()[0])  
    content_df['embedding'] = content_embeddings  

    return user_df, content_df  
5.2.2 推荐系统核心模块
from surprise import Dataset, Reader, SVD  
from surprise.model_selection import train_test_split  

def build_hybrid_recommender(user_df, content_df):  
    # 协同过滤部分:使用Surprise库的SVD模型  
    reader = Reader(rating_scale=(1, 5))  
    data = Dataset.load_from_df(user_df[['user_id', 'content_id', 'rating']], reader)  
    trainset, testset = train_test_split(data, test_size=0.2)  
    cf_model = SVD(n_factors=100, n_epochs=20, lr_all=0.01, reg_all=0.1)  
    cf_model.fit(trainset)  

    # 内容特征部分:构建内容ID到嵌入的映射  
    content_id_to_embed = {cid: embed for cid, embed in zip(content_df['content_id'], content_df['embedding'])}  

    # 混合推荐函数:结合CF预测和内容相似度  
    def hybrid_recommend(user_id, top_n=10):  
        # 获取用户未交互的内容  
        interacted_content = user_df[user_df['user_id'] == user_id]['content_id'].tolist()  
        candidate_content = content_df[~content_df['content_id'].isin(interacted_content)]['content_id'].tolist()  

        # 计算CF评分预测和内容相似度  
        cf_scores = []  
        content_sims = []  
        user_vector = cf_model.pu[cf_model.trainset.to_inner_uid(user_id)]  
        for cid in candidate_content:  
            # CF评分预测  
            cf_score = cf_model.predict(user_id, cid).est  
            # 内容相似度:用户历史偏好平均向量与当前内容嵌入的余弦相似度  
            hist_content = user_df[user_df['user_id'] == user_id]['content_id']  
            if len(hist_content) == 0:  
                hist_embed = np.zeros(768)  
            else:  
                hist_embed = np.mean([content_id_to_embed[c] for c in hist_content], axis=0)  
            content_embed = content_id_to_embed[cid]  
            sim = np.dot(hist_embed, content_embed) / (np.linalg.norm(hist_embed) * np.linalg.norm(content_embed))  
            cf_scores.append(cf_score)  
            content_sims.append(sim)  

        # 混合得分:0.6*CF评分 + 0.4*内容相似度  
        hybrid_scores = [0.6*s1 + 0.4*s2 for s1, s2 in zip(cf_scores, content_sims)]  
        # 排序并返回top-n  
        sorted_indices = np.argsort(-np.array(hybrid_scores))  
        top_cids = [candidate_content[i] for i in sorted_indices[:top_n]]  
        return top_cids  

    return hybrid_recommend  
5.2.3 内容生成模块集成
from transformers import pipeline  

def generate_content(recommended_content_id, user_query, max_length=500):  
    # 获取推荐内容的模板或风格特征(假设内容数据包含生成参数)  
    content_template = content_df[content_df['content_id'] == recommended_content_id]['template'].iloc[0]  
    style = content_df[content_df['content_id'] == recommended_content_id]['style'].iloc[0]  

    # 使用T5模型生成内容  
    generator = pipeline('text-generation', model='t5-base')  
    input_text = f"用户需求:{user_query},模板:{content_template},风格:{style}"  
    output = generator(input_text, max_length=max_length, num_return_sequences=1)  
    return output[0]['generated_text']  

5.3 系统整体流程

  1. 用户输入处理:通过NLP模块解析需求文本,提取关键实体和意图。
  2. 推荐引擎响应:混合推荐模型结合用户历史行为和内容语义,生成top-N推荐内容ID。
  3. 内容生成:根据推荐的内容特征(模板、风格),调用生成模型输出具体文本。
  4. 反馈循环:用户对生成内容的交互数据(如点赞、修改)回流到推荐系统,优化模型参数。

6. 实际应用场景

6.1 内容创作辅助

  • 场景:作家使用AI写作工具时,系统根据其历史作品风格推荐合适的开头模板、情节片段或词汇搭配。
  • 价值:提升写作效率,减少重复劳动,帮助作者突破创作瓶颈。

6.2 教育领域

  • 场景:学生撰写论文时,系统推荐相关研究领域的文献摘要、引用格式模板,甚至自动生成文献综述初稿。
  • 技术关键点:准确识别学术领域(如计算机科学、生物学)和论文类型(综述、实验报告)。

6.3 营销文案生成

  • 场景:电商平台根据用户浏览的商品属性(如护肤品的成分、功效),推荐对应的广告文案模板,并生成个性化产品描述。
  • 优势:实现“千人千面”的营销内容,提升转化率和用户参与度。

6.4 代码辅助生成

  • 场景:程序员输入功能需求(如“实现一个快速排序算法”),系统推荐最优代码结构,并生成包含注释的完整代码段。
  • 技术挑战:准确理解技术术语(如数据结构、算法复杂度)并匹配代码片段语义。

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《推荐系统实践》(项亮):经典推荐系统入门教材,涵盖协同过滤、矩阵分解等基础算法。
  • 《自然语言处理综论》(Jurafsky & Martin):NLP领域权威著作,适合系统学习语法分析、语义建模等技术。
  • 《Hands-On Machine Learning for AIGC》(Ankur Patel):结合实战案例讲解AIGC技术与推荐系统的融合。
7.1.2 在线课程
  • Coursera《Recommender Systems Specialization》(University of Minnesota):包含协同过滤、深度学习推荐等模块。
  • Udemy《Natural Language Processing with Python and Deep Learning》:实战导向的NLP课程,涵盖BERT、Transformer等模型。
  • Kaggle《AIGC for Content Generation》:通过竞赛项目学习生成式模型与推荐系统结合。
7.1.3 技术博客和网站
  • Medium《Towards Data Science》:发布推荐系统和NLP领域的前沿技术文章。
  • 博客园《AIGC技术专栏》:聚焦中文语境下的AIGC应用案例分析。
  • arXiv计算机科学板块:获取推荐系统与NLP交叉领域的最新研究论文(如“Hybrid Recommender Systems for AIGC Writing”)。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • PyCharm:专业Python开发环境,支持深度学习模型调试和代码重构。
  • VS Code:轻量级编辑器,通过插件支持Jupyter Notebook、PyTorch调试等功能。
7.2.2 调试和性能分析工具
  • TensorBoard:可视化深度学习模型训练过程,监控损失函数和指标变化。
  • NVIDIA Nsight Systems:GPU性能分析工具,优化模型推理速度。
7.2.3 相关框架和库
  • 推荐系统:Surprise(传统推荐算法)、LightFM(混合推荐模型)、RecPy(高效矩阵分解)
  • NLP:spaCy(工业级NLP库)、Hugging Face Transformers(预训练模型生态)
  • 生成模型:GPT-Neo(开源生成模型)、T5(文本到文本生成框架)

7.3 相关论文著作推荐

7.3.1 经典论文
  • 《Collaborative Filtering for Implicit Feedback Datasets》(Hu et al., 2008):解决隐式反馈数据的推荐问题。
  • 《BERT: Pre-training of Deep Bidirectional Representations for Language Understanding》(Devlin et al., 2019):奠定预训练模型在NLP中的基础。
  • 《Hybrid Recommender Systems: A Survey》(Burke, 2002):混合推荐系统的早期系统性总结。
7.3.2 最新研究成果
  • 《Recommender Systems Meet AIGC: A New Paradigm for Content Generation》(ICML 2023):探讨推荐系统如何优化生成式模型的输出质量。
  • 《Context-Aware Semantic Matching for Personalized Writing Assistance》(ACL 2023):提出基于上下文的语义匹配模型提升推荐精度。
7.3.3 应用案例分析
  • OpenAI的Codex系统:结合代码推荐与生成技术,实现自然语言到代码的转换。
  • Grammarly的写作辅助工具:通过用户写作风格分析推荐语法修正和表达优化建议。

8. 总结:未来发展趋势与挑战

8.1 技术趋势

  1. 多模态推荐:融合文本、图像、音频等多维度数据,实现更丰富的内容推荐(如推荐与用户写作风格匹配的配图)。
  2. 个性化生成控制:通过用户画像动态调整生成模型的参数(如温度、多样性),实现“推荐-生成”的精准匹配。
  3. 联邦学习推荐:在保护用户隐私的前提下,利用分布式数据训练推荐模型,解决数据孤岛问题。

8.2 关键挑战

  1. 语义理解偏差:用户需求的模糊表达(如“写一篇有趣的文章”)可能导致推荐结果与预期不符,需提升上下文感知和意图推断能力。
  2. 冷启动问题:新用户或新内容缺乏交互数据时,如何通过元数据(如用户注册信息、内容标签)快速建立推荐模型。
  3. 生成质量控制:推荐的内容模板可能包含低质量或错误信息,需建立内容可信度评估机制,结合人工审核与自动过滤。

8.3 发展展望

随着AIGC技术的普及,智能推荐系统将从“信息检索”升级为“价值创造”,成为连接用户需求与创造性内容的核心枢纽。未来需进一步探索推荐算法与生成模型的深度融合,构建具备自适应学习能力的智能写作生态,推动内容生产从“自动化”向“智能化”跨越。

9. 附录:常见问题与解答

Q1:如何处理用户需求中的歧义表达?

A:通过结合实体链接(如将“苹果”链接到“水果”或“科技公司”实体)和上下文历史(用户之前的写作主题),使用多任务学习模型同时进行意图分类和实体消歧。

Q2:混合推荐模型中如何选择协同过滤和内容特征的权重?

A:可通过交叉验证(Cross-Validation)在训练数据上搜索最优权重参数,或使用动态权重机制根据用户交互数据实时调整。

Q3:如何评估推荐系统对内容生成质量的影响?

A:采用主观评估(用户满意度调查)和客观指标(生成文本与需求的语义相似度、BLEU评分)相结合的方式,建立多维度评估体系。

10. 扩展阅读 & 参考资料

  1. Hugging Face官方文档
  2. Surprise推荐系统库文档
  3. OpenAI API技术文档
  4. 《AIGC:人工智能生成内容时代的技术革命》(清华大学出版社)

通过以上技术架构和实现方案,AIGC领域的智能推荐系统能够有效提升内容生成的针对性和质量,为用户提供更智能、更个性化的写作辅助体验。随着技术的不断进步,该系统将在更多领域发挥关键作用,推动AI从工具走向真正的智能创作伙伴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值