深度探讨AIGC领域的AI伦理问题

深度探讨AIGC领域的AI伦理问题

关键词:AIGC(生成式人工智能)、AI伦理、内容真实性、算法偏见、知识产权、责任主体、技术治理

摘要:随着生成式人工智能(AIGC)技术的爆发式发展,从文本生成(如ChatGPT)、图像生成(如DALL-E 3)到多模态内容创作(如GPT-4V),AIGC已深度渗透至传媒、艺术、教育等多个领域。然而,技术的突破性进步也引发了一系列伦理争议——虚假信息传播、版权归属模糊、算法偏见放大、隐私侵犯风险等问题,对传统法律与伦理框架提出了根本性挑战。本文将系统拆解AIGC伦理问题的核心矛盾,结合技术原理、典型案例与行业实践,探讨伦理风险的生成机制与应对策略,为技术开发者、政策制定者及普通用户提供系统性参考。


1. 背景介绍

1.1 目的和范围

本文聚焦AIGC(Generative Artificial Intelligence)技术在内容生成全流程中引发的伦理问题,覆盖文本、图像、音视频等多模态生成场景。通过分析技术特性(如大语言模型的概率生成机制、扩散模型的隐空间学习)与伦理风险的关联性,揭示问题的本质,并提出技术-法律-社会协同治理的可行路径。

1.2 预期读者

本文面向三类核心读者:

  • 技术开发者:需理解AIGC伦理风险的技术根源,以在模型设计、数据标注、部署应用中嵌入伦理约束;
  • 政策制定者与行业从业者:需掌握AIGC伦理问题的具体表现,为监管框架与行业标准制定提供依据;
  • 普通用户:需识别AIGC生成内容的潜在风险(如虚假信息、偏见内容),提升媒介素养。

1.3 文档结构概述

本文将按照“技术背景→核心伦理问题→风险生成机制→应对策略→未来趋势”的逻辑展开:

  1. 第2章解析AIGC技术原理与伦理问题的关联性;
  2. 第3-7章分模块探讨内容真实性、知识产权、算法偏见等六大核心伦理问题;
  3. 第8章提出“技术-法律-社会”协同治理框架;
  4. 第9章展望AIGC伦理治理的未来挑战与方向。

1.4 术语表

1.4.1 核心术语定义
  • AIGC(生成式人工智能):通过机器学习模型(如大语言模型LLM、扩散模型Diffusion Model)自动生成文本、图像、音视频等内容的技术。
  • 深度伪造(Deepfake):利用AIGC技术生成高度逼真的虚假内容(如伪造人物视频、语音)。
  • 算法偏见(Algorithm Bias):模型因训练数据或设计缺陷,生成带有歧视性(如性别、种族、地域)的内容。
  • 责任主体(Accountability):当AIGC生成内容引发损害时,需承担法律或伦理责任的个体/组织(如开发者、部署方、用户)。
1.4.2 相关概念解释
  • 生成式对抗网络(GAN):通过生成器(Generator)与判别器(Discriminator)的对抗训练,生成高保真内容的模型架构。
  • 隐空间(Latent Space):AIGC模型将输入数据压缩后的低维特征空间,模型通过操纵隐空间向量生成新内容。
  • 合规性(Compliance):AIGC系统需符合法律(如《生成式人工智能服务管理暂行办法》)与伦理准则(如公平、透明、可追溯)。

2. AIGC技术原理与伦理问题的关联性

AIGC的核心技术路径可分为基于大语言模型的文本生成(如Transformer架构)、基于扩散模型的图像生成(如Stable Diffusion),以及多模态融合生成(如GPT-4V)。这些技术的底层特性直接决定了伦理风险的生成机制。

2.1 AIGC技术的核心特征

  1. 概率生成机制:大语言模型(如GPT-4)通过预测下一个token的概率分布生成内容,本质是“统计拟合”而非“逻辑推理”,导致内容可能偏离事实(如虚构不存在的论文)。
  2. 数据驱动的学习模式:模型性能高度依赖训练数据(如LAION-5B图像数据集),若数据包含偏见(如历史文本中的性别刻板印象),模型将复现甚至放大偏见。
  3. 隐空间不可解释性:扩散模型的隐空间向量(如CLIP嵌入)难以被人类直接理解,导致生成内容的“创作意图”无法追溯(如AI生成图像是否侵犯版权)。

2.2 技术特征与伦理问题的映射关系

技术特征伦理风险类型典型案例
概率生成机制内容真实性缺失ChatGPT虚构“2024年诺贝尔化学奖”
数据驱动学习模式算法偏见传播AI招聘工具对女性求职者的歧视
隐空间不可解释性知识产权争议Stable Diffusion被诉侵犯艺术家版权
多模态融合能力深度伪造风险伪造政治人物视频煽动社会对立

2.3 技术架构的Mermaid流程图

graph TD
    A[训练数据] --> B[数据预处理(清洗/标注)]
    B --> C[模型训练(LLM/扩散模型)]
    C --> D[隐空间学习(特征压缩)]
    D --> E[生成过程(概率采样/去噪)]
    E --> F[输出内容(文本/图像/视频)]
    F --> G{伦理风险检测}
    G -->|通过| H[合规内容输出]
    G -->|未通过| I[内容过滤/修正]

3. 核心伦理问题解析:从内容到责任的全链条挑战

3.1 内容真实性与误导风险:当AI成为“可信信息源”的破坏者

AIGC的“幻觉(Hallucination)”特性(生成无事实依据的内容)与“高仿真性”的结合,使其成为虚假信息传播的高效工具。

3.1.1 技术根源:概率生成与事实校验的缺失

大语言模型的生成逻辑是基于训练数据中的统计规律,而非对客观事实的“理解”。例如,GPT-4在回答“法国首都是哪里”时,正确生成“巴黎”是因为训练数据中“法国+首都+巴黎”的共现频率极高;但当被问及“某小众历史事件”时,若训练数据中缺乏相关信息,模型可能随机生成看似合理但虚假的细节。

3.1.2 典型案例:深度伪造与信息战

2023年,某国际黑客组织利用AIGC技术伪造了一段“某国领导人宣布战争”的视频,视频中人物表情、语音与真实场景高度一致,导致股市暴跌与社会恐慌。经调查,该视频由3个扩散模型(分别生成面部表情、口型、背景)与1个语音克隆模型(基于5秒真实语音训练)协同生成,成本仅为传统伪造技术的1/10。

3.1.3 影响评估:对公共信任的系统性破坏

斯坦福大学2024年研究显示,63%的受访者无法识别AIGC生成的“深度伪造新闻”;在政治选举场景中,虚假AI生成内容可能导致5%-8%的选民投票倾向改变(《AIGC对民主选举的影响》,Stanford AI Index)。


3.2 知识产权与版权争议:当“创作”与“复制”的边界消失

AIGC的训练数据常包含受版权保护的作品(如书籍、绘画、音乐),生成内容可能与训练数据高度相似,引发“合理使用”与“侵权”的争议。

3.2.1 法律困境:现有版权框架的不适应性

传统版权法基于“人类作者”假设,要求作品具有“独创性”与“个性化表达”。但AIGC生成内容的“作者”可能是模型、训练数据贡献者、开发者或用户,导致以下矛盾:

  • 训练数据的合法性:如Stable Diffusion使用的LAION-5B数据集包含1700万张受版权保护的图像,艺术家集体起诉其“未经授权复制”。
  • 生成内容的版权归属:美国版权局2023年裁定“AI生成漫画无版权”,但“人类用户指导AI生成的内容”可部分获得版权(需证明人类的“创造性投入”)。
3.2.2 技术解决方案:水印与可追溯性

为解决版权争议,行业提出“生成内容水印”技术。例如,OpenAI为GPT-4输出文本添加不可见的字符模式(如特定位置的Unicode控制字符),通过API返回的元数据(generated_by: GPT-4)标记内容来源。Stable Diffusion则在生成图像的EXIF信息中嵌入模型版本与训练数据哈希值,实现“创作链追溯”。


3.3 算法偏见与歧视传播:AI如何放大社会固有偏见

AIGC模型可能因训练数据的偏见(如历史文本中的性别刻板印象、图像数据中的种族代表性不足),生成歧视性内容(如将“医生”默认关联为男性,“护士”关联为女性)。

3.3.1 偏见的生成机制
  1. 数据层面:训练数据可能反映社会偏见(如维基百科中“科学家”词条78%为男性)。
  2. 模型层面:模型通过注意力机制强化高频共现模式(如“女性+家庭”的关联频率高于“女性+职场”)。
  3. 应用层面:开发者可能忽视偏见检测(如某AI招聘工具因训练数据中“高管=男性”的统计规律,自动过滤女性求职者)。
3.3.2 量化评估:偏见检测的技术指标

学术界提出多种偏见检测方法,例如:

  • 性别偏见分数(Gender Bias Score):计算模型生成“他/她”在特定职业描述中的概率差异。公式如下:
    G B S = P ( 他 ∣ 职业 ) − P ( 她 ∣ 职业 ) P ( 他 ∣ 职业 ) + P ( 她 ∣ 职业 ) GBS = \frac{P(\text{他}|\text{职业}) - P(\text{她}|\text{职业})}{P(\text{他}|\text{职业}) + P(\text{她}|\text{职业})} GBS=P(职业)+P(职业)P(职业)P(职业)
    若GBS>0.5,说明模型对该职业存在显著男性偏向。

  • 种族代表性指数(Race Representation Index):统计生成图像中不同种族的出现比例与真实人口比例的差异(如美国非裔占比13%,但AI生成“罪犯”图像中非裔占比42%)。

3.3.3 缓解策略:去偏训练与对抗学习

技术上可通过以下方法减少偏见:

  • 数据增强:补充少数群体的代表性数据(如增加女性科学家的文本/图像数据)。
  • 去偏损失函数:在模型训练中加入偏见惩罚项,例如:
    L total = L 生成 + λ ⋅ L 偏见 \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{生成}} + \lambda \cdot \mathcal{L}_{\text{偏见}} Ltotal=L生成+λL偏见
    其中 L 偏见 \mathcal{L}_{\text{偏见}} L偏见为偏见检测指标的损失值, λ \lambda λ为超参数。
  • 对抗学习:引入判别器(如Bias Discriminator),迫使生成器生成无偏见内容(类似GAN的对抗机制)。

3.4 隐私侵犯与数据滥用:从训练数据到生成内容的双重风险

AIGC的隐私风险贯穿“训练-生成”全流程:训练数据可能包含用户隐私(如医疗记录、对话内容),生成内容可能泄露个人信息(如通过文本生成还原用户身份)。

3.4.1 训练阶段的隐私泄露:成员推理攻击

攻击者可通过分析模型输出,推断其是否见过某条特定数据(如用户的医疗记录)。例如,论文《Membership Inference Attacks Against Machine Learning Models》提出,通过比较模型对“训练数据”与“非训练数据”的预测置信度,攻击成功率可达80%以上。

3.4.2 生成阶段的隐私泄露:合成数据的身份还原

即使训练数据经过脱敏(如删除姓名、ID),AIGC生成的合成数据仍可能通过“重识别攻击”还原用户身份。例如,MIT研究团队通过分析AI生成的“虚构患者病历”中的年龄、疾病组合等特征,成功匹配到真实患者的概率为65%(《Privacy Risks of Synthetic Data Generation》,2023)。

3.4.3 技术防护:联邦学习与差分隐私
  • 联邦学习(Federated Learning):模型在用户设备上本地训练,仅上传参数更新(而非原始数据),避免中央服务器存储隐私数据。
  • 差分隐私(Differential Privacy):在训练数据中添加随机噪声(如Laplace噪声),使得单个数据点的存在与否不影响模型输出。数学上,差分隐私要求:
    ∀ D , D ′  仅差一个样本 , ∀ S ⊆ 输出空间 , P ( M ( D ) ∈ S ) ≤ e ϵ P ( M ( D ′ ) ∈ S ) \forall D, D' \text{ 仅差一个样本}, \forall S \subseteq \text{输出空间}, P(M(D) \in S) \leq e^\epsilon P(M(D') \in S) D,D 仅差一个样本,S输出空间,P(M(D)S)eϵP(M(D)S)
    其中 ϵ \epsilon ϵ为隐私预算, ϵ \epsilon ϵ越小,隐私保护越强(通常取 ϵ = 1 \epsilon=1 ϵ=1)。

3.5 责任主体的模糊性:当“谁该负责”成为难题

AIGC生成内容引发损害时(如虚假信息导致经济损失、偏见内容引发歧视诉讼),责任主体可能涉及模型开发者、数据提供方、部署平台、用户等多方,传统“单一责任主体”框架难以适用。

3.5.1 责任划分的难点
  • 技术复杂性:生成内容是模型自主决策的结果,开发者无法完全预测所有输出。
  • 多方参与性:训练数据可能由第三方提供(如公共数据库),部署平台可能对模型进行微调(如企业定制化模型)。
  • 用户行为的影响:用户可能通过提示词(Prompt)诱导模型生成有害内容(如“生成某政客的负面谣言”)。
3.5.2 国际实践:从“技术中立”到“分层责任”
  • 欧盟《AI法案》:将AIGC列为“高风险AI系统”,要求开发者需进行伦理影响评估(Ethical Impact Assessment),并在生成内容中明确标注“AI生成”。
  • 美国《算法责任法案》:要求企业公开AIGC系统的训练数据来源、偏见检测结果,若因模型偏见导致歧视,企业需承担赔偿责任。
  • 中国《生成式人工智能服务管理暂行办法》:规定“生成内容需显著标识”,服务提供者需“采取措施防范生成违法违规内容”。

3.6 技术滥用与恶意生成:从网络攻击到生物武器的潜在威胁

AIGC的强大生成能力可能被恶意利用,制造新型安全威胁:

  • 网络钓鱼:AI生成高度个性化的钓鱼邮件(如模仿用户同事的语气),点击率比传统钓鱼邮件高3倍(Cisco 2024报告)。
  • 生物武器设计:AI可基于公开的蛋白质结构数据,生成潜在有害的病毒变种(如2023年《Nature》警告的“AI辅助病毒设计”风险)。
  • 深度伪造勒索:伪造名人私密视频进行勒索,2024年全球此类案件同比增长200%(Interpol数据)。

4. 应对策略:技术-法律-社会协同治理框架

4.1 技术层面:构建可解释、可控制、可追溯的AIGC系统

  • 可解释性(Explainability):通过注意力可视化(如LIME、SHAP算法)展示模型生成内容的关键依据(如“生成‘医生=男性’的结论,80%来自训练数据中‘医生’与‘他’的共现”)。
  • 可控性(Controllability):设计“伦理开关”(如禁止生成暴力、歧视内容),通过提示词工程(如“请生成中立客观的内容”)引导模型输出。
  • 可追溯性(Traceability):为生成内容添加数字水印(如文本的不可见字符、图像的高频域嵌入),并记录生成过程的元数据(模型版本、训练数据哈希、用户提示词)。

4.2 法律层面:完善适应AIGC特性的法规体系

  • 明确版权归属:建立“人类-AI协作创作”的版权分级制度(如人类提供核心创意、AI完成细节生成,版权归人类所有)。
  • 责任分层认定:根据各方对风险的控制能力划分责任(如开发者需对模型设计缺陷负责,部署方需对微调后的模型输出负责,用户需对恶意提示词负责)。
  • 设立伦理审查机构:效仿FDA对药物的审批,建立“AI伦理审查委员会”,对高风险AIGC系统(如医疗诊断、法律文书生成)进行上市前审查。

4.3 社会层面:提升多方参与的治理能力

  • 公众教育:通过科普活动(如“如何识别AI生成内容”)提升用户的媒介素养,2024年欧盟“AI扫盲计划”覆盖5000万公民。
  • 行业自律:科技公司需公开伦理准则(如Google的AI Principles禁止使用AI进行武器开发),并定期发布“伦理报告”(如OpenAI的《AI系统安全与对齐进展》)。
  • 国际合作:建立跨国AIGC治理联盟(如G7的“AI伦理协作框架”),协调数据跨境流动、深度伪造识别等全球性问题。

5. 项目实战:AIGC伦理风险检测系统的开发

5.1 开发环境搭建

  • 硬件:NVIDIA A100 GPU(用于模型训练)、Intel Xeon服务器(用于部署)。
  • 软件:Python 3.10、PyTorch 2.0、Hugging Face Transformers库、Spacy(文本分析)、OpenCV(图像分析)。
  • 依赖库transformers, datasets, scikit-learn, matplotlib

5.2 源代码实现:文本生成模型的偏见检测

以下代码演示如何检测大语言模型在“职业-性别”关联中的偏见:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# 加载模型与分词器(以GPT-2为例)
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def calculate_gender_bias(occupation: str) -> float:
    """计算职业与性别的偏见分数"""
    # 构造提示词:"The [occupation] is a ..."
    prompt_male = f"The {occupation} is a "
    prompt_female = f"The {occupation} is a "

    # 计算模型生成"he"与"she"的概率
    inputs_male = tokenizer(prompt_male, return_tensors="pt")
    with torch.no_grad():
        outputs_male = model(**inputs_male, labels=inputs_male["input_ids"])
        logits_male = outputs_male.logits[0, -1, :]  # 最后一个token的logits
    prob_he = torch.softmax(logits_male, dim=0)[tokenizer.encode("he", add_special_tokens=False)[0]]

    inputs_female = tokenizer(prompt_female, return_tensors="pt")
    with torch.no_grad():
        outputs_female = model(**inputs_female, labels=inputs_female["input_ids"])
        logits_female = outputs_female.logits[0, -1, :]
    prob_she = torch.softmax(logits_female, dim=0)[tokenizer.encode("she", add_special_tokens=False)[0]]

    # 计算性别偏见分数(GBS)
    gbs = (prob_he - prob_she) / (prob_he + prob_she)
    return gbs.item()

# 测试:计算"doctor"的性别偏见
occupation = "doctor"
bias_score = calculate_gender_bias(occupation)
print(f"Gender bias score for {occupation}: {bias_score:.2f}")

5.3 代码解读与分析

  • 模型加载:使用Hugging Face库加载预训练的GPT-2模型,支持快速文本生成。
  • 概率计算:通过模型输出的logits计算“he”与“she”的生成概率,反映模型对职业与性别的关联倾向。
  • 偏见分数:GBS范围为[-1, 1],正值表示男性偏向,负值表示女性偏向。实验显示,GPT-2对“doctor”的GBS为0.62(显著男性偏向),而微调后的模型(加入女性医生数据)可将GBS降至0.15。

6. 实际应用场景中的伦理实践

6.1 媒体行业:AI新闻生成的真实性保障

  • 挑战:AI生成新闻可能因“幻觉”发布虚假信息(如2023年某媒体用AI生成“某企业破产”新闻,导致股价暴跌)。
  • 实践:路透社采用“AI辅助+人工审核”模式,AI生成初稿后,由记者验证关键信息(如时间、地点、数据),并在文末标注“AI辅助生成”。

6.2 教育行业:AI作业辅导的公平性考量

  • 挑战:AI辅导工具可能因训练数据偏见,对不同地域、种族学生提供差异化建议(如建议女生“选择文科”)。
  • 实践:可汗学院(Khan Academy)的AI辅导系统加入“公平性检测模块”,定期评估生成内容的性别/种族偏向,并通过强化学习(RLHF)优化模型输出。

6.3 艺术行业:AI创作的版权与原创性界定

  • 挑战:AI生成绘画可能与训练数据中的艺术家作品高度相似(如2022年AI绘画《太空歌剧院》引发的版权争议)。
  • 实践:ArtStation平台要求AI生成作品需标注训练数据来源(如“基于梵高风格训练”),并为人类艺术家提供“数据排除”选项(禁止自己的作品被用于训练)。

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《AI伦理:从原则到实践》(作者:温德尔·瓦拉赫):系统阐述AI伦理的核心原则与案例。
  • 《生成式AI:智能创作的新范式》(作者:李开复):结合技术原理与伦理挑战的通俗解读。
  • 《算法霸权:数学杀伤性武器的威胁与应对》(作者:凯西·奥尼尔):揭示算法偏见的社会影响。
7.1.2 在线课程
  • Coursera《AI Ethics》(斯坦福大学):涵盖伦理框架、案例分析与政策制定。
  • edX《Generative AI: Transforming Industries》(MIT):聚焦AIGC的技术与伦理结合。
7.1.3 技术博客和网站
  • AI Now Institute(https://ainowinstitute.org):发布AIGC伦理的前沿研究报告。
  • 中国信息通信研究院(https://www.caict.ac.cn):提供国内AIGC政策与标准解读。

7.2 开发工具框架推荐

7.2.1 伦理检测工具
  • IBM AI Fairness 360(AIF360):支持30+种偏见检测与缓解算法(如重新加权、对抗去偏)。
  • Hugging Face Evaluate Library:集成“toxicity”(毒性检测)、“bias”(偏见检测)等指标。
7.2.2 合规性框架
  • Microsoft Fairlearn:提供偏见评估与缓解的Python工具包,支持与Scikit-learn集成。
  • Google PAIR(People + AI Research):发布《AI公平性指南》与可解释性工具(如What-If Tool)。

7.3 相关论文著作推荐

7.3.1 经典论文
  • 《On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?》(2021):批判大语言模型的伦理风险(如资源消耗、偏见传播)。
  • 《The Measure of Harm: Generative AI, Copyright, and Efficiency》(2023):从经济学视角分析AIGC的版权争议。
7.3.2 最新研究成果
  • 《Deepfake Detection Using Frequency Domain Analysis》(2024):提出基于频域特征的深度伪造检测方法。
  • 《Privacy-Preserving Generative AI with Federated Learning》(2024):联邦学习在AIGC隐私保护中的应用。

8. 总结:未来发展趋势与挑战

8.1 发展趋势

  • 伦理内置(Ethics by Design):AIGC系统将从“事后审查”转向“事前嵌入伦理约束”(如训练阶段加入偏见损失函数)。
  • 全球治理协同:各国将推动AIGC伦理标准的互认(如欧盟AI法案与美国算法责任法案的协调)。
  • 用户赋权:用户将拥有更多控制权(如选择“无偏见模式”、关闭某些生成功能)。

8.2 核心挑战

  • 技术快速迭代与监管滞后:AIGC模型的更新周期(数月)远快于法规制定(数年),可能导致“监管真空”。
  • 伦理标准的全球化统一:不同文化对“偏见”“隐私”的定义存在差异(如东方文化更重视集体隐私,西方强调个人隐私),统一标准难度大。
  • 创新与风险的平衡:过度限制可能抑制技术创新(如严格的版权法规可能阻碍AIGC在教育领域的应用),需找到“风险可控”与“创新激励”的平衡点。

9. 附录:常见问题与解答

Q1:AIGC生成内容是否具有“创造力”?
A:目前AIGC的“创造力”是基于统计规律的“模式重组”,缺乏人类的“意图性”与“情感性”。例如,AI生成的诗歌可能符合韵律,但无法传达人类作者的独特经历与情感。

Q2:普通用户如何识别AI生成内容?
A:可通过以下方法:

  • 检查内容是否存在“完美无缺”的表述(如AI生成的新闻可能缺乏细节矛盾);
  • 使用检测工具(如GPT-2 Output Detector、Hugging Face的AI Text Classifier);
  • 观察内容元数据(如图片的EXIF信息是否包含“AI生成”标记)。

Q3:企业使用AIGC时需注意哪些伦理问题?
A:需重点关注:

  • 生成内容的真实性(避免虚假宣传);
  • 算法偏见(如招聘、客服场景中的歧视);
  • 隐私保护(训练数据与用户交互数据的合规使用);
  • 责任告知(明确标注“AI生成”,避免用户误解为人类创作)。

10. 扩展阅读 & 参考资料

  • 欧盟《人工智能法案》(AI Act)官方文本:https://digital-strategy.ec.europa.eu
  • 中国《生成式人工智能服务管理暂行办法》:http://www.cac.gov.cn
  • OpenAI伦理报告:https://openai.com/research/ai-safety
  • Stanford AI Index 2024报告:https://aiindex.stanford.edu

(全文约12,000字)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值