解读AI人工智能对图像处理行业的重塑

解读AI人工智能对图像处理行业的重塑

关键词:AI人工智能、图像处理行业、重塑、深度学习、计算机视觉

摘要:本文旨在深入解读AI人工智能对图像处理行业所带来的重塑。首先介绍了相关背景,包括目的、预期读者、文档结构和术语表。接着阐述了核心概念与联系,分析了核心算法原理及具体操作步骤,并结合数学模型和公式进行详细讲解。通过项目实战案例展示了代码实现和解读,探讨了实际应用场景。同时推荐了学习工具和资源,最后总结了未来发展趋势与挑战,解答了常见问题并提供扩展阅读和参考资料,全面剖析了AI在图像处理行业中引发的变革。

1. 背景介绍

1.1 目的和范围

本文章的主要目的是全面且深入地解读AI人工智能给图像处理行业带来的重塑效应。随着科技的飞速发展,AI在图像处理领域的应用日益广泛且深入,了解这一重塑过程对于行业从业者、研究者以及对该领域感兴趣的人士都具有重要意义。文章的范围涵盖了AI在图像处理中的核心概念、算法原理、数学模型、实际应用案例等多个方面,旨在为读者呈现一个完整的AI与图像处理行业融合的图景。

1.2 预期读者

本文的预期读者包括但不限于图像处理行业的专业人士,如摄影师、图像设计师、视频编辑师等,他们可以通过本文了解如何利用AI技术提升工作效率和质量;计算机科学领域的研究者和开发者,能从文中获取AI在图像处理方面的技术细节和最新研究成果;对AI和图像处理感兴趣的普通爱好者,帮助他们了解这一领域的发展动态和应用前景。

1.3 文档结构概述

本文将按照以下结构进行阐述:首先介绍相关背景知识,包括目的、读者和文档结构等;接着讲解核心概念与联系,通过文本示意图和Mermaid流程图展示其原理和架构;然后详细分析核心算法原理及具体操作步骤,并给出Python源代码;之后探讨数学模型和公式,结合实例进行说明;通过项目实战展示代码实现和解读;介绍实际应用场景;推荐学习工具和资源;最后总结未来发展趋势与挑战,解答常见问题并提供扩展阅读和参考资料。

1.4 术语表

1.4.1 核心术语定义
  • AI人工智能:是指让计算机系统能够模拟人类智能的一系列技术和方法,包括机器学习、深度学习、自然语言处理等。
  • 图像处理:是指对图像进行分析、增强、恢复、分割、识别等操作,以达到改善图像质量、提取有用信息等目的。
  • 深度学习:是机器学习的一个分支,通过构建多层神经网络来学习数据的特征和模式,在图像识别、语音识别等领域取得了显著成果。
  • 计算机视觉:是AI的一个重要领域,旨在让计算机像人类一样理解和解释图像和视频中的内容。
1.4.2 相关概念解释
  • 卷积神经网络(CNN):是一种专门用于处理具有网格结构数据(如图像)的深度学习模型,通过卷积层、池化层和全连接层等组件自动提取图像的特征。
  • 生成对抗网络(GAN):由生成器和判别器两个神经网络组成,通过对抗训练的方式生成逼真的图像。
  • 图像分类:是指将图像分为不同的类别,例如将动物图像分为猫、狗、鸟等类别。
  • 图像分割:是指将图像中的不同对象或区域进行分割和标注,例如将医学图像中的肿瘤区域分割出来。
1.4.3 缩略词列表
  • AI:Artificial Intelligence(人工智能)
  • CNN:Convolutional Neural Network(卷积神经网络)
  • GAN:Generative Adversarial Network(生成对抗网络)
  • RGB:Red, Green, Blue(红绿蓝,图像的颜色模式)

2. 核心概念与联系

核心概念原理

AI人工智能在图像处理中的核心概念主要基于深度学习和计算机视觉技术。深度学习通过构建多层神经网络,让计算机自动学习图像的特征和模式。以卷积神经网络(CNN)为例,它通过卷积层对图像进行卷积操作,提取图像的局部特征;池化层对特征图进行下采样,减少数据量;全连接层将提取的特征进行分类或回归。

计算机视觉则是利用AI技术让计算机理解和解释图像中的内容。它包括图像分类、目标检测、图像分割等任务。例如,图像分类任务是判断图像属于哪个类别,目标检测任务是在图像中找出特定目标的位置和类别,图像分割任务是将图像中的不同对象或区域进行分割和标注。

架构的文本示意图

以下是一个简单的基于CNN的图像分类系统的架构文本示意图:

输入图像 -> 卷积层1(卷积核、激活函数) -> 池化层1 -> 卷积层2(卷积核、激活函数) -> 池化层2 -> … -> 全连接层1 -> 全连接层2 -> 输出(类别概率)

Mermaid流程图

输入图像
卷积层1
池化层1
卷积层2
池化层2
全连接层1
全连接层2
输出类别概率

3. 核心算法原理 & 具体操作步骤

核心算法原理

以卷积神经网络(CNN)为例,其核心算法原理主要包括卷积操作、池化操作和全连接操作。

卷积操作

卷积操作是CNN的核心,它通过卷积核在图像上滑动,对每个局部区域进行加权求和,从而提取图像的局部特征。假设输入图像为 X X X,卷积核为 W W W,卷积操作可以表示为:

Y i , j = ∑ m = 0 M − 1 ∑ n = 0 N − 1 X i + m , j + n W m , n + b Y_{i,j}=\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}X_{i+m,j+n}W_{m,n}+b Yi,j=m=0M1n=0N1Xi+m,j+nWm,n+b

其中, Y i , j Y_{i,j} Yi,j 是输出特征图的第 ( i , j ) (i,j) (i,j) 个元素, M M M N N N 是卷积核的大小, b b b 是偏置项。

池化操作

池化操作主要用于减少特征图的尺寸,降低计算量,同时增强模型的鲁棒性。常见的池化操作有最大池化和平均池化。以最大池化为例,它在每个局部区域中选择最大值作为输出。

全连接操作

全连接层将卷积层和池化层提取的特征进行整合,用于分类或回归任务。全连接层的每个神经元与上一层的所有神经元相连,通过线性变换和激活函数进行计算。

具体操作步骤

以下是使用Python和PyTorch库实现一个简单的CNN图像分类模型的具体操作步骤:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 定义数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 加载训练集和测试集
train_dataset = datasets.MNIST(root='./data', train=True,
                               download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False,
                              download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)

# 定义CNN模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
        self.relu1 = nn.ReLU()
        self.pool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.fc1 = nn.Linear(32 * 7 * 7, 128)
        self.relu3 = nn.ReLU()
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.pool1(self.relu1(self.conv1(x)))
        x = self.pool2(self.relu2(self.conv2(x)))
        x = x.view(-1, 32 * 7 * 7)
        x = self.relu3(self.fc1(x))
        x = self.fc2(x)
        return x

# 初始化模型、损失函数和优化器
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
    running_loss = 0.0
    for i, (images, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')

# 测试模型
correct = 0
total = 0
with torch.no_grad():
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy on test set: {100 * correct / total}%')

代码解释

  1. 数据预处理:使用 transforms.Compose 对图像进行预处理,包括转换为张量和归一化操作。
  2. 数据加载:使用 torchvision.datasets.MNIST 加载MNIST手写数字数据集,并使用 torch.utils.data.DataLoader 进行数据加载。
  3. 模型定义:定义一个简单的CNN模型,包括两个卷积层、两个池化层和两个全连接层。
  4. 损失函数和优化器:使用交叉熵损失函数和Adam优化器进行模型训练。
  5. 模型训练:通过多个epoch对模型进行训练,每个epoch中对训练数据进行迭代,计算损失并更新模型参数。
  6. 模型测试:在测试集上评估模型的准确率。

4. 数学模型和公式 & 详细讲解 & 举例说明

卷积操作的数学模型

如前面所述,卷积操作的数学公式为:

Y i , j = ∑ m = 0 M − 1 ∑ n = 0 N − 1 X i + m , j + n W m , n + b Y_{i,j}=\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}X_{i+m,j+n}W_{m,n}+b Yi,j=m=0M1n=0N1Xi+m,j+nWm,n+b

其中, X X X 是输入图像, W W W 是卷积核, b b b 是偏置项。卷积操作可以看作是对输入图像的局部特征进行提取。例如,一个 3 × 3 3\times3 3×3 的卷积核可以提取图像的边缘、角点等局部特征。

池化操作的数学模型

以最大池化为例,假设输入特征图为 X X X,池化窗口大小为 k × k k\times k k×k,步长为 s s s,则最大池化操作可以表示为:

Y i , j = max ⁡ m = 0 k − 1 max ⁡ n = 0 k − 1 X i × s + m , j × s + n Y_{i,j}=\max_{m=0}^{k-1}\max_{n=0}^{k-1}X_{i\times s + m,j\times s + n} Yi,j=m=0maxk1n=0maxk1Xi×s+m,j×s+n

最大池化操作在每个池化窗口中选择最大值作为输出,从而减少特征图的尺寸。

全连接层的数学模型

全连接层的输入为 x x x,权重矩阵为 W W W,偏置向量为 b b b,输出为 y y y,则全连接层的计算可以表示为:

y = W x + b y = Wx + b y=Wx+b

在实际应用中,通常会在全连接层后面添加激活函数,如ReLU函数,以引入非线性。

举例说明

假设输入图像是一个 4 × 4 4\times4 4×4 的灰度图像:

X = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] X = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} X= 15913261014371115481216

使用一个 2 × 2 2\times2 2×2 的卷积核:

W = [ 1 0 0 1 ] W = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} W=[1001]

偏置项 b = 0 b = 0 b=0,步长为1。则卷积操作的计算过程如下:

对于输出特征图的第一个元素 Y 0 , 0 Y_{0,0} Y0,0

Y 0 , 0 = X 0 , 0 W 0 , 0 + X 0 , 1 W 0 , 1 + X 1 , 0 W 1 , 0 + X 1 , 1 W 1 , 1 + b = 1 × 1 + 2 × 0 + 5 × 0 + 6 × 1 + 0 = 7 Y_{0,0}=X_{0,0}W_{0,0}+X_{0,1}W_{0,1}+X_{1,0}W_{1,0}+X_{1,1}W_{1,1}+b=1\times1 + 2\times0 + 5\times0 + 6\times1 + 0 = 7 Y0,0=X0,0W0,0+X0,1W0,1+X1,0W1,0+X1,1W1,1+b=1×1+2×0+5×0+6×1+0=7

以此类推,可以计算出整个输出特征图。

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

要进行本项目实战,需要搭建以下开发环境:

安装Python

推荐使用Python 3.7及以上版本,可以从Python官方网站(https://www.python.org/downloads/)下载并安装。

安装PyTorch

根据自己的CUDA版本和操作系统,从PyTorch官方网站(https://pytorch.org/get-started/locally/)选择合适的安装命令进行安装。例如,使用pip安装CPU版本的PyTorch:

pip install torch torchvision
安装其他依赖库

还需要安装一些其他的依赖库,如numpy、matplotlib等,可以使用以下命令进行安装:

pip install numpy matplotlib

5.2 源代码详细实现和代码解读

以下是一个使用GAN生成手写数字图像的项目实战代码:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 定义数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True,
                               download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

# 定义生成器
class Generator(nn.Module):
    def __init__(self, z_dim=100, img_dim=784):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            nn.Linear(z_dim, 256),
            nn.LeakyReLU(0.1),
            nn.Linear(256, img_dim),
            nn.Tanh()
        )

    def forward(self, x):
        return self.gen(x)

# 定义判别器
class Discriminator(nn.Module):
    def __init__(self, img_dim=784):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            nn.Linear(img_dim, 128),
            nn.LeakyReLU(0.1),
            nn.Linear(128, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.disc(x)

# 初始化生成器和判别器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
gen = Generator().to(device)
disc = Discriminator().to(device)

# 定义损失函数和优化器
lr = 3e-4
opt_gen = optim.Adam(gen.parameters(), lr=lr)
opt_disc = optim.Adam(disc.parameters(), lr=lr)
criterion = nn.BCELoss()

# 训练GAN
num_epochs = 50
for epoch in range(num_epochs):
    for batch_idx, (real, _) in enumerate(train_loader):
        real = real.view(-1, 784).to(device)
        batch_size = real.shape[0]

        ### 训练判别器
        noise = torch.randn(batch_size, 100).to(device)
        fake = gen(noise)
        disc_real = disc(real).view(-1)
        lossD_real = criterion(disc_real, torch.ones_like(disc_real))
        disc_fake = disc(fake.detach()).view(-1)
        lossD_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
        lossD = (lossD_real + lossD_fake) / 2
        disc.zero_grad()
        lossD.backward()
        opt_disc.step()

        ### 训练生成器
        output = disc(fake).view(-1)
        lossG = criterion(output, torch.ones_like(output))
        gen.zero_grad()
        lossG.backward()
        opt_gen.step()

    print(f'Epoch [{epoch + 1}/{num_epochs}] Loss D: {lossD.item():.4f}, Loss G: {lossG.item():.4f}')

# 生成一些图像进行可视化
num_samples = 16
noise = torch.randn(num_samples, 100).to(device)
generated_images = gen(noise).cpu().detach().view(num_samples, 28, 28).numpy()

fig, axes = plt.subplots(4, 4, figsize=(4, 4))
axes = axes.flatten()
for i in range(num_samples):
    axes[i].imshow(generated_images[i], cmap='gray')
    axes[i].axis('off')
plt.show()

5.3 代码解读与分析

  1. 数据预处理和加载:使用 transforms.Compose 对图像进行预处理,将图像转换为张量并归一化。使用 torchvision.datasets.MNIST 加载MNIST数据集,并使用 DataLoader 进行数据加载。
  2. 生成器和判别器定义
    • 生成器:接受一个随机噪声向量作为输入,通过全连接层和激活函数生成一个 28 × 28 28\times28 28×28 的手写数字图像。
    • 判别器:接受一个图像作为输入,通过全连接层和激活函数判断该图像是真实图像还是生成图像。
  3. 损失函数和优化器:使用二元交叉熵损失函数(BCELoss)和Adam优化器进行模型训练。
  4. 训练过程
    • 训练判别器:首先生成一些假图像,然后分别计算判别器对真实图像和假图像的损失,将两者损失相加并求平均,更新判别器的参数。
    • 训练生成器:生成一些假图像,计算判别器对这些假图像的损失,更新生成器的参数,使得生成的图像更接近真实图像。
  5. 可视化生成的图像:训练完成后,生成一些随机噪声向量,通过生成器生成手写数字图像并进行可视化。

6. 实际应用场景

图像增强与修复

AI技术可以用于图像增强,提高图像的清晰度、对比度和色彩饱和度等。例如,在摄影后期处理中,使用AI算法可以自动调整图像的亮度和颜色,使图像更加生动。同时,AI还可以用于图像修复,如去除图像中的划痕、污渍等。例如,在文物修复领域,通过AI技术可以对受损的图像进行修复和还原。

图像识别与分类

图像识别和分类是AI在图像处理中最常见的应用场景之一。例如,在安防领域,通过监控摄像头采集的图像,使用AI算法可以识别出人脸、车辆等目标,并进行分类和跟踪。在医疗领域,AI可以对医学图像(如X光、CT等)进行分析和诊断,帮助医生识别疾病和病变。

图像生成与创意设计

AI可以生成逼真的图像,如绘画、风景、人物等。例如,一些AI绘画工具可以根据用户输入的文本描述生成相应的图像,为设计师和艺术家提供创意灵感。在游戏开发中,AI也可以用于生成游戏场景和角色模型,提高开发效率和质量。

视频处理与分析

在视频处理领域,AI可以用于视频剪辑、视频分类、视频内容审核等。例如,通过AI算法可以自动识别视频中的精彩片段,进行剪辑和拼接。在社交媒体平台上,AI可以对视频内容进行审核,过滤不良信息。

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《深度学习》(Deep Learning):由Ian Goodfellow、Yoshua Bengio和Aaron Courville所著,是深度学习领域的经典教材,全面介绍了深度学习的基本原理和算法。
  • 《Python深度学习》(Deep Learning with Python):由Francois Chollet所著,结合Keras框架,详细介绍了如何使用Python进行深度学习项目的开发。
  • 《计算机视觉:算法与应用》(Computer Vision: Algorithms and Applications):由Richard Szeliski所著,全面介绍了计算机视觉的基本算法和应用。
7.1.2 在线课程
  • Coursera上的“深度学习专项课程”(Deep Learning Specialization):由Andrew Ng教授授课,包括神经网络和深度学习、改善深层神经网络、结构化机器学习项目、卷积神经网络和序列模型等五个课程。
  • edX上的“人工智能基础”(Introduction to Artificial Intelligence):由麻省理工学院(MIT)提供,介绍了人工智能的基本概念、算法和应用。
  • 哔哩哔哩(B站)上有很多关于AI和图像处理的免费教程,如“莫烦Python”的深度学习教程等。
7.1.3 技术博客和网站
  • Medium:是一个技术博客平台,有很多AI和图像处理领域的优秀文章。
  • Towards Data Science:专注于数据科学和机器学习领域,提供了大量的技术文章和案例分析。
  • 机器之心:国内专注于AI技术的媒体平台,提供最新的技术资讯和深度分析。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • PyCharm:是一款专门为Python开发设计的集成开发环境(IDE),具有代码编辑、调试、版本控制等功能。
  • Jupyter Notebook:是一个交互式的开发环境,适合进行数据探索和模型实验。
  • Visual Studio Code:是一款轻量级的代码编辑器,支持多种编程语言,有丰富的插件扩展。
7.2.2 调试和性能分析工具
  • PyTorch Profiler:是PyTorch提供的性能分析工具,可以帮助开发者分析模型的运行时间和内存使用情况。
  • TensorBoard:是TensorFlow提供的可视化工具,可以用于可视化模型的训练过程、损失曲线、准确率等。
  • NVIDIA Nsight Systems:是NVIDIA提供的性能分析工具,适用于GPU加速的深度学习模型。
7.2.3 相关框架和库
  • PyTorch:是一个开源的深度学习框架,具有动态图机制,易于使用和调试。
  • TensorFlow:是Google开发的深度学习框架,具有广泛的应用和丰富的工具。
  • OpenCV:是一个开源的计算机视觉库,提供了大量的图像处理和计算机视觉算法。

7.3 相关论文著作推荐

7.3.1 经典论文
  • “ImageNet Classification with Deep Convolutional Neural Networks”:由Alex Krizhevsky等人发表,介绍了AlexNet模型,开启了深度学习在图像分类领域的热潮。
  • “Generative Adversarial Nets”:由Ian Goodfellow等人发表,提出了生成对抗网络(GAN)的概念。
  • “U-Net: Convolutional Networks for Biomedical Image Segmentation”:由Olaf Ronneberger等人发表,提出了U-Net模型,在医学图像分割领域取得了很好的效果。
7.3.2 最新研究成果
  • 可以通过学术搜索引擎(如Google Scholar、IEEE Xplore等)搜索最新的AI和图像处理领域的研究论文,关注顶级学术会议(如CVPR、ICCV、ECCV等)的论文发表情况。
7.3.3 应用案例分析
  • Kaggle是一个数据科学竞赛平台,有很多关于图像分类、目标检测、图像生成等方面的竞赛和数据集,可以参考优秀的解决方案和代码实现。
  • GitHub上有很多开源的AI和图像处理项目,可以学习和借鉴他人的经验。

8. 总结:未来发展趋势与挑战

未来发展趋势

  • 更强大的模型和算法:随着计算能力的提升和研究的深入,未来将会出现更强大的深度学习模型和算法,能够处理更复杂的图像处理任务,如生成更加逼真的图像和视频。
  • 跨领域融合:AI与其他领域的融合将会更加深入,如与医学、艺术、娱乐等领域的结合,创造出更多的应用场景和商业价值。
  • 边缘计算和实时处理:随着物联网和5G技术的发展,对图像处理的实时性要求越来越高,边缘计算将成为未来的发展趋势,使得图像处理可以在设备端实时完成。

挑战

  • 数据隐私和安全:在图像处理过程中,涉及到大量的个人图像数据,如何保护数据的隐私和安全是一个重要的挑战。
  • 模型可解释性:深度学习模型通常是一个黑盒模型,难以解释其决策过程和结果,这在一些关键领域(如医疗诊断)的应用中存在一定的风险。
  • 计算资源和能耗:训练和运行复杂的深度学习模型需要大量的计算资源和能耗,如何降低计算成本和能耗是一个亟待解决的问题。

9. 附录:常见问题与解答

问题1:AI在图像处理中的应用是否会取代人类的工作?

解答:虽然AI在图像处理中具有很高的效率和准确性,但目前还无法完全取代人类的工作。人类在创意设计、审美判断等方面具有独特的优势,AI更多的是作为一种辅助工具,帮助人类提高工作效率和质量。

问题2:学习AI和图像处理需要具备哪些基础知识?

解答:需要具备一定的数学基础,如线性代数、概率论与数理统计等;还需要掌握编程语言,如Python;了解机器学习和深度学习的基本概念和算法。

问题3:如何选择适合的深度学习框架?

解答:可以根据自己的需求和喜好来选择。PyTorch具有动态图机制,易于使用和调试,适合初学者和研究人员;TensorFlow具有广泛的应用和丰富的工具,适合工业界的开发。

10. 扩展阅读 & 参考资料

扩展阅读

  • 《AI未来进行式》:探讨了AI在各个领域的应用和未来发展趋势。
  • 《智能时代》:介绍了AI对社会和经济的影响。

参考资料

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Chollet, F. (2017). Deep Learning with Python. Manning Publications.
  • Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值