AI人工智能语音识别在智能家居健康监测中的应用
关键词:AI人工智能、语音识别、智能家居、健康监测、应用
摘要:本文深入探讨了AI人工智能语音识别技术在智能家居健康监测领域的应用。首先介绍了该研究的背景、目的、预期读者和文档结构,阐述了相关术语。接着详细讲解了语音识别和智能家居健康监测的核心概念及联系,并给出了相应的示意图和流程图。对语音识别的核心算法原理进行了剖析,使用Python代码进行说明。通过数学模型和公式进一步阐释其原理,并举例说明。在项目实战部分,介绍了开发环境搭建、源代码实现及解读。列举了该技术的实际应用场景,推荐了相关的学习资源、开发工具框架和论文著作。最后总结了未来发展趋势与挑战,解答了常见问题,并提供了扩展阅读和参考资料,旨在全面展现AI人工智能语音识别在智能家居健康监测中的重要价值和应用前景。
1. 背景介绍
1.1 目的和范围
随着科技的飞速发展,智能家居和人工智能技术逐渐融入人们的生活。AI人工智能语音识别技术在智能家居健康监测中的应用成为了研究的热点。本文章的目的在于全面深入地探讨AI人工智能语音识别技术如何在智能家居健康监测中发挥作用,分析其原理、应用场景、开发实现等方面。范围涵盖了语音识别技术的基本原理、智能家居健康监测的相关概念、两者结合的具体应用方式,以及实际项目开发和未来发展趋势等内容。
1.2 预期读者
本文预期读者包括对人工智能、智能家居、健康监测等领域感兴趣的技术爱好者,从事相关领域研究和开发的专业人员,如程序员、软件架构师等,以及关注智能家居健康监测市场的投资者和行业分析师。对于想要了解语音识别技术在智能家居健康监测中应用的初学者和希望深入研究该领域的专业人士都具有一定的参考价值。
1.3 文档结构概述
本文将按照以下结构进行阐述:首先介绍相关的背景知识,包括目的、预期读者和文档结构等内容,并对核心术语进行定义和解释。接着讲解语音识别和智能家居健康监测的核心概念及其联系,给出相应的示意图和流程图。然后详细分析语音识别的核心算法原理,使用Python代码进行具体说明,并通过数学模型和公式进一步阐释。在项目实战部分,介绍开发环境搭建、源代码实现及解读。之后列举该技术的实际应用场景,推荐相关的学习资源、开发工具框架和论文著作。最后总结未来发展趋势与挑战,解答常见问题,并提供扩展阅读和参考资料。
1.4 术语表
1.4.1 核心术语定义
- AI人工智能(Artificial Intelligence):是指通过计算机模拟人类智能的技术,包括学习、推理、决策等能力。
- 语音识别(Speech Recognition):将人类的语音信号转换为文本或命令的技术。
- 智能家居(Smart Home):利用先进的计算机技术、网络通信技术、综合布线技术等,将家中的各种设备连接到一起,实现智能化控制和管理的家居系统。
- 健康监测(Health Monitoring):对人体的生理参数、健康状况等进行实时或定期监测的过程。
1.4.2 相关概念解释
- 深度学习(Deep Learning):是人工智能的一个分支,通过构建多层神经网络来学习数据的特征和模式,在语音识别等领域取得了显著的成果。
- 自然语言处理(Natural Language Processing):研究如何让计算机理解和处理人类语言的技术,与语音识别密切相关。
- 传感器(Sensor):用于检测和测量各种物理量、化学量等的设备,在智能家居健康监测中用于获取人体的生理数据。
1.4.3 缩略词列表
- AI:Artificial Intelligence
- ASR:Automatic Speech Recognition(自动语音识别)
- ML:Machine Learning(机器学习)
- DL:Deep Learning(深度学习)
2. 核心概念与联系
2.1 语音识别技术原理
语音识别技术的目标是将人类的语音信号转换为文本或命令。其基本原理可以分为以下几个步骤:
- 语音信号采集:使用麦克风等设备将语音信号转换为电信号。
- 预处理:对采集到的语音信号进行滤波、降噪等处理,以提高信号的质量。
- 特征提取:从预处理后的语音信号中提取特征,如梅尔频率倒谱系数(MFCC)等。
- 模型训练:使用机器学习或深度学习算法对提取的特征进行训练,建立语音识别模型。
- 解码识别:将待识别的语音信号的特征输入到训练好的模型中,进行解码识别,得到对应的文本或命令。
2.2 智能家居健康监测概念
智能家居健康监测是指利用智能家居系统中的各种传感器和设备,对人体的生理参数、健康状况等进行实时或定期监测,并将监测数据传输到云端或本地服务器进行分析和处理。常见的监测参数包括心率、血压、体温、睡眠质量等。通过智能家居健康监测,用户可以及时了解自己的健康状况,医生也可以根据监测数据为用户提供个性化的健康建议。
2.3 两者的联系
AI人工智能语音识别技术在智能家居健康监测中具有重要的作用。通过语音识别技术,用户可以使用语音指令控制智能家居设备进行健康监测,如“测量我的心率”“查询我的睡眠数据”等。同时,语音识别技术还可以将监测结果以语音的形式反馈给用户,提高用户的使用体验。此外,语音交互还可以方便老年人和残疾人等特殊人群使用智能家居健康监测系统。
2.4 核心概念原理和架构的文本示意图
+------------------+
| 语音信号采集设备 |
+------------------+
|
v
+------------------+
| 语音预处理 |
+------------------+
|
v
+------------------+
| 特征提取 |
+------------------+
|
v
+------------------+
| 语音识别模型训练 |
+------------------+
|
v
+------------------+
| 解码识别 |
+------------------+
|
v
+------------------+
| 智能家居健康监测 |
+------------------+
2.5 Mermaid流程图
3. 核心算法原理 & 具体操作步骤
3.1 语音识别核心算法 - 隐马尔可夫模型(HMM)
隐马尔可夫模型(HMM)是一种统计模型,常用于语音识别中。它可以描述语音信号的时序特征。HMM由三个要素组成:状态转移概率矩阵 A A A、观测概率矩阵 B B B 和初始状态概率向量 π \pi π。
3.1.1 算法原理
- 状态转移概率矩阵 A A A:表示在某个状态下转移到其他状态的概率。
- 观测概率矩阵 B B B:表示在某个状态下生成某个观测值的概率。
- 初始状态概率向量 π \pi π:表示系统在初始时刻处于各个状态的概率。
在语音识别中,语音信号被看作是一系列的观测值,而语音的发音状态被看作是隐藏状态。通过训练HMM模型,可以得到合适的 A A A、 B B B 和 π \pi π,从而实现对语音信号的识别。
3.1.2 Python代码实现
import numpy as np
# 定义HMM模型的参数
states = ('S1', 'S2', 'S3')
observations = ('O1', 'O2', 'O3')
start_probability = {'S1': 0.6, 'S2': 0.3, 'S3': 0.1}
transition_probability = {
'S1': {'S1': 0.7, 'S2': 0.2, 'S3': 0.1},
'S2': {'S1': 0.3, 'S2': 0.5, 'S3': 0.2},
'S3': {'S1': 0.2, 'S2': 0.3, 'S3': 0.5}
}
emission_probability = {
'S1': {'O1': 0.5, 'O2': 0.4, 'O3': 0.1},
'S2': {'O1': 0.2, 'O2': 0.6, 'O3': 0.2},
'S3': {'O1': 0.1, 'O2': 0.3, 'O3': 0.6}
}
def viterbi(obs, states, start_p, trans_p, emit_p):
V = [{}]
path = {}
# 初始化第一步
for y in states:
V[0][y] = start_p[y] * emit_p[y][obs[0]]
path[y] = [y]
# 递推计算
for t in range(1, len(obs)):
V.append({})
newpath = {}
for y in states:
(prob, state) = max((V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states)
V[t][y] = prob
newpath[y] = path[state] + [y]
path = newpath
# 终止
(prob, state) = max((V[len(obs) - 1][y], y) for y in states)
return (prob, path[state])
# 测试
obs = ('O1', 'O2', 'O3')
prob, path = viterbi(obs, states, start_probability, transition_probability, emission_probability)
print("最大概率:", prob)
print("最优路径:", path)
3.2 具体操作步骤
- 数据准备:收集大量的语音数据,并进行标注,作为训练数据。
- 特征提取:对语音数据进行特征提取,如MFCC特征。
- 模型训练:使用训练数据对HMM模型进行训练,得到 A A A、 B B B 和 π \pi π。
- 模型评估:使用测试数据对训练好的模型进行评估,计算识别准确率等指标。
- 部署应用:将训练好的模型部署到智能家居系统中,实现语音识别功能。
4. 数学模型和公式 & 详细讲解 & 举例说明
4.1 隐马尔可夫模型的数学公式
4.1.1 状态转移概率矩阵 A A A
设 A = [ a i j ] A = [a_{ij}] A=[aij],其中 a i j a_{ij} aij 表示从状态 i i i 转移到状态 j j j 的概率,满足 ∑ j = 1 N a i j = 1 \sum_{j=1}^{N} a_{ij} = 1 ∑j=1Naij=1, N N N 为状态的总数。
4.1.2 观测概率矩阵 B B B
设 B = [ b j ( k ) ] B = [b_{j}(k)] B=[bj(k)],其中 b j ( k ) b_{j}(k) bj(k) 表示在状态 j j j 下生成观测值 k k k 的概率,满足 ∑ k = 1 M b j ( k ) = 1 \sum_{k=1}^{M} b_{j}(k) = 1 ∑k=1Mbj(k)=1, M M M 为观测值的总数。
4.1.3 初始状态概率向量 π \pi π
设 π = [ π i ] \pi = [\pi_{i}] π=[πi],其中 π i \pi_{i} πi 表示系统在初始时刻处于状态 i i i 的概率,满足 ∑ i = 1 N π i = 1 \sum_{i=1}^{N} \pi_{i} = 1 ∑i=1Nπi=1。
4.1.4 前向算法公式
前向算法用于计算观测序列 O = ( o 1 , o 2 , ⋯ , o T ) O = (o_1, o_2, \cdots, o_T) O=(o1,o2,⋯,oT) 在模型 λ = ( A , B , π ) \lambda = (A, B, \pi) λ=(A,B,π) 下的概率 P ( O ∣ λ ) P(O|\lambda) P(O∣λ)。
定义前向变量
α
t
(
i
)
\alpha_{t}(i)
αt(i) 为在时刻
t
t
t 处于状态
i
i
i 且观测到序列
o
1
,
o
2
,
⋯
,
o
t
o_1, o_2, \cdots, o_t
o1,o2,⋯,ot 的概率:
α
1
(
i
)
=
π
i
b
i
(
o
1
)
\alpha_{1}(i) = \pi_{i} b_{i}(o_1)
α1(i)=πibi(o1)
α
t
+
1
(
j
)
=
(
∑
i
=
1
N
α
t
(
i
)
a
i
j
)
b
j
(
o
t
+
1
)
\alpha_{t + 1}(j) = \left(\sum_{i = 1}^{N} \alpha_{t}(i) a_{ij}\right) b_{j}(o_{t + 1})
αt+1(j)=(i=1∑Nαt(i)aij)bj(ot+1)
则
P
(
O
∣
λ
)
=
∑
i
=
1
N
α
T
(
i
)
P(O|\lambda) = \sum_{i = 1}^{N} \alpha_{T}(i)
P(O∣λ)=∑i=1NαT(i)。
4.1.5 后向算法公式
后向算法也用于计算观测序列 O O O 在模型 λ \lambda λ 下的概率。
定义后向变量
β
t
(
i
)
\beta_{t}(i)
βt(i) 为在时刻
t
t
t 处于状态
i
i
i 且观测到序列
o
t
+
1
,
o
t
+
2
,
⋯
,
o
T
o_{t + 1}, o_{t + 2}, \cdots, o_T
ot+1,ot+2,⋯,oT 的概率:
β
T
(
i
)
=
1
\beta_{T}(i) = 1
βT(i)=1
β
t
(
i
)
=
∑
j
=
1
N
a
i
j
b
j
(
o
t
+
1
)
β
t
+
1
(
j
)
\beta_{t}(i) = \sum_{j = 1}^{N} a_{ij} b_{j}(o_{t + 1}) \beta_{t + 1}(j)
βt(i)=j=1∑Naijbj(ot+1)βt+1(j)
则
P
(
O
∣
λ
)
=
∑
i
=
1
N
π
i
b
i
(
o
1
)
β
1
(
i
)
P(O|\lambda) = \sum_{i = 1}^{N} \pi_{i} b_{i}(o_1) \beta_{1}(i)
P(O∣λ)=∑i=1Nπibi(o1)β1(i)。
4.2 详细讲解
隐马尔可夫模型通过状态转移概率矩阵、观测概率矩阵和初始状态概率向量来描述系统的状态变化和观测值的生成。前向算法和后向算法是计算观测序列概率的两种常用方法,它们可以避免直接计算所有可能的状态序列的概率,从而提高计算效率。
4.3 举例说明
假设我们有一个简单的语音识别任务,语音信号的观测值有两种:“高”和“低”,隐藏状态有两种:“状态1”和“状态2”。
初始状态概率向量 π = [ 0.6 , 0.4 ] \pi = [0.6, 0.4] π=[0.6,0.4],状态转移概率矩阵 A = [ 0.7 0.3 0.4 0.6 ] A = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} A=[0.70.40.30.6],观测概率矩阵 B = [ 0.5 0.5 0.2 0.8 ] B = \begin{bmatrix} 0.5 & 0.5 \\ 0.2 & 0.8 \end{bmatrix} B=[0.50.20.50.8]。
现在有一个观测序列 O = ( 高 , 低 ) O = (高, 低) O=(高,低)。
使用前向算法计算 P ( O ∣ λ ) P(O|\lambda) P(O∣λ):
- 第一步:
- α 1 ( 1 ) = π 1 b 1 ( 高 ) = 0.6 × 0.5 = 0.3 \alpha_{1}(1) = \pi_{1} b_{1}(高) = 0.6 \times 0.5 = 0.3 α1(1)=π1b1(高)=0.6×0.5=0.3
- α 1 ( 2 ) = π 2 b 2 ( 高 ) = 0.4 × 0.2 = 0.08 \alpha_{1}(2) = \pi_{2} b_{2}(高) = 0.4 \times 0.2 = 0.08 α1(2)=π2b2(高)=0.4×0.2=0.08
- 第二步:
- α 2 ( 1 ) = ( α 1 ( 1 ) a 11 + α 1 ( 2 ) a 21 ) b 1 ( 低 ) = ( 0.3 × 0.7 + 0.08 × 0.4 ) × 0.5 = 0.121 \alpha_{2}(1) = (\alpha_{1}(1) a_{11} + \alpha_{1}(2) a_{21}) b_{1}(低) = (0.3 \times 0.7 + 0.08 \times 0.4) \times 0.5 = 0.121 α2(1)=(α1(1)a11+α1(2)a21)b1(低)=(0.3×0.7+0.08×0.4)×0.5=0.121
- α 2 ( 2 ) = ( α 1 ( 1 ) a 12 + α 1 ( 2 ) a 22 ) b 2 ( 低 ) = ( 0.3 × 0.3 + 0.08 × 0.6 ) × 0.8 = 0.1008 \alpha_{2}(2) = (\alpha_{1}(1) a_{12} + \alpha_{1}(2) a_{22}) b_{2}(低) = (0.3 \times 0.3 + 0.08 \times 0.6) \times 0.8 = 0.1008 α2(2)=(α1(1)a12+α1(2)a22)b2(低)=(0.3×0.3+0.08×0.6)×0.8=0.1008
- 最终:
- P ( O ∣ λ ) = α 2 ( 1 ) + α 2 ( 2 ) = 0.121 + 0.1008 = 0.2218 P(O|\lambda) = \alpha_{2}(1) + \alpha_{2}(2) = 0.121 + 0.1008 = 0.2218 P(O∣λ)=α2(1)+α2(2)=0.121+0.1008=0.2218
5. 项目实战:代码实际案例和详细解释说明
5.1 开发环境搭建
5.1.1 硬件环境
- 开发板:可以选择树莓派等开发板作为智能家居系统的控制中心。
- 麦克风:用于采集语音信号。
- 传感器:如心率传感器、血压传感器等,用于健康监测。
5.1.2 软件环境
- 操作系统:可以选择Linux系统,如Raspbian等。
- 编程语言:Python,因为其具有丰富的库和工具,适合语音识别和智能家居开发。
- 语音识别库:可以使用SpeechRecognition库进行语音识别。
- 数据库:可以使用SQLite数据库存储健康监测数据。
5.2 源代码详细实现和代码解读
5.2.1 语音识别部分
import speech_recognition as sr
# 创建一个Recognizer对象
r = sr.Recognizer()
# 使用麦克风采集语音
with sr.Microphone() as source:
print("请说话...")
audio = r.listen(source)
try:
# 使用Google Web Speech API进行语音识别
text = r.recognize_google(audio, language='zh-CN')
print("你说的是: " + text)
except sr.UnknownValueError:
print("无法识别语音")
except sr.RequestError as e:
print("请求错误; {0}".format(e))
代码解读:
sr.Recognizer()
:创建一个Recognizer对象,用于处理语音识别任务。sr.Microphone()
:使用麦克风采集语音信号。r.listen(source)
:监听麦克风输入的语音信号。r.recognize_google(audio, language='zh-CN')
:使用Google Web Speech API对采集到的语音信号进行识别,指定语言为中文。
5.2.2 健康监测部分
import sqlite3
import random
# 模拟心率传感器数据
def get_heart_rate():
return random.randint(60, 100)
# 连接数据库
conn = sqlite3.connect('health.db')
c = conn.cursor()
# 创建表
c.execute('''CREATE TABLE IF NOT EXISTS heart_rate
(id INTEGER PRIMARY KEY AUTOINCREMENT,
rate INTEGER,
time TEXT)''')
# 获取心率数据
heart_rate = get_heart_rate()
import datetime
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# 插入数据
c.execute("INSERT INTO heart_rate (rate, time) VALUES (?,?)", (heart_rate, current_time))
conn.commit()
# 查询数据
c.execute("SELECT * FROM heart_rate")
rows = c.fetchall()
for row in rows:
print(row)
# 关闭连接
conn.close()
代码解读:
get_heart_rate()
:模拟心率传感器获取心率数据。sqlite3.connect('health.db')
:连接到SQLite数据库。c.execute()
:执行SQL语句,创建表、插入数据和查询数据。conn.commit()
:提交数据库事务。conn.close()
:关闭数据库连接。
5.3 代码解读与分析
5.3.1 语音识别代码分析
上述语音识别代码使用了SpeechRecognition库,该库提供了简单易用的接口,可以方便地实现语音识别功能。通过使用Google Web Speech API,可以实现较高的识别准确率。但是,该API需要联网使用,并且有一定的使用限制。
5.3.2 健康监测代码分析
健康监测代码模拟了心率传感器获取心率数据,并将数据存储到SQLite数据库中。通过使用SQLite数据库,可以方便地存储和管理健康监测数据。同时,代码还演示了如何查询数据库中的数据。
6. 实际应用场景
6.1 日常健康监测
用户可以通过语音指令控制智能家居设备进行日常健康监测,如测量心率、血压、体温等。设备将监测结果以语音的形式反馈给用户,并将数据存储到云端或本地服务器,方便用户随时查看和分析。
6.2 睡眠监测
智能家居系统可以在用户睡眠时通过传感器监测用户的睡眠质量,如睡眠时间、睡眠深度等。用户可以在醒来后通过语音查询睡眠监测结果,了解自己的睡眠状况。
6.3 健康提醒
智能家居系统可以根据用户的健康监测数据和预设的健康目标,为用户提供健康提醒。例如,当用户的心率过高时,系统可以通过语音提醒用户休息;当用户忘记按时服药时,系统可以通过语音提醒用户。
6.4 紧急救援
当用户遇到紧急情况时,如突发疾病或摔倒,智能家居系统可以通过语音识别技术识别用户的求救信号,并及时通知家人、医生或急救中心。
7. 工具和资源推荐
7.1 学习资源推荐
7.1.1 书籍推荐
- 《深度学习》(Deep Learning):由Ian Goodfellow、Yoshua Bengio和Aaron Courville所著,是深度学习领域的经典教材,介绍了深度学习的基本原理和应用。
- 《语音识别原理与应用》:详细介绍了语音识别的基本原理、算法和应用,适合对语音识别技术感兴趣的读者。
7.1.2 在线课程
- Coursera上的“深度学习专项课程”:由Andrew Ng教授授课,系统地介绍了深度学习的各个方面,包括语音识别。
- edX上的“语音识别基础”:该课程介绍了语音识别的基本概念、算法和技术。
7.1.3 技术博客和网站
- Medium:上面有很多关于人工智能、语音识别和智能家居的技术文章。
- 开源中国:提供了丰富的技术资源和开源项目,对于学习和实践有很大的帮助。
7.2 开发工具框架推荐
7.2.1 IDE和编辑器
- PyCharm:是一款专门为Python开发设计的集成开发环境,具有强大的代码编辑、调试和项目管理功能。
- Visual Studio Code:是一款轻量级的代码编辑器,支持多种编程语言,并且有丰富的插件可以扩展功能。
7.2.2 调试和性能分析工具
- Py-Spy:是一个用于Python代码性能分析的工具,可以帮助开发者找出代码中的性能瓶颈。
- PDB:是Python自带的调试器,可以帮助开发者调试代码中的错误。
7.2.3 相关框架和库
- TensorFlow:是一个开源的深度学习框架,提供了丰富的工具和接口,用于构建和训练语音识别模型。
- Keras:是一个高级神经网络API,基于TensorFlow等后端,简化了深度学习模型的构建过程。
7.3 相关论文著作推荐
7.3.1 经典论文
- 《Deep Speech: Scaling up end-to-end speech recognition》:介绍了Deep Speech模型,该模型是一种端到端的语音识别模型。
- 《Long Short-Term Memory》:介绍了长短期记忆网络(LSTM),在语音识别等序列处理任务中取得了很好的效果。
7.3.2 最新研究成果
可以关注顶级学术会议如ICASSP(国际声学、语音和信号处理会议)、Interspeech等上的最新研究成果。
7.3.3 应用案例分析
可以参考一些实际的智能家居健康监测项目的案例分析,了解如何将语音识别技术应用到实际项目中。
8. 总结:未来发展趋势与挑战
8.1 未来发展趋势
- 更加智能化:随着人工智能技术的不断发展,语音识别技术将更加智能化,能够更好地理解用户的意图和语境,提供更加个性化的服务。
- 多模态融合:语音识别技术将与图像识别、手势识别等技术进行融合,实现更加自然和便捷的交互方式。
- 云边协同:智能家居健康监测系统将采用云边协同的架构,将部分计算任务放在边缘设备上进行处理,减少数据传输延迟,提高系统的响应速度。
8.2 挑战
- 语音识别准确率:在复杂的环境中,语音识别的准确率仍然有待提高,如背景噪音、口音等因素会影响识别效果。
- 数据隐私和安全:智能家居健康监测系统涉及到用户的大量敏感数据,如何保障数据的隐私和安全是一个重要的挑战。
- 标准和规范:目前智能家居健康监测领域缺乏统一的标准和规范,不同厂家的设备和系统之间可能存在兼容性问题。
9. 附录:常见问题与解答
9.1 语音识别不准确怎么办?
- 检查环境噪音:尽量在安静的环境中使用语音识别功能,避免背景噪音的干扰。
- 检查麦克风:确保麦克风正常工作,并且与设备连接良好。
- 训练语音模型:可以使用一些语音识别库提供的训练功能,对语音模型进行训练,提高识别准确率。
9.2 如何保障智能家居健康监测数据的安全?
- 采用加密技术:对传输和存储的数据进行加密,防止数据被窃取和篡改。
- 加强访问控制:设置严格的访问权限,只有授权的人员才能访问数据。
- 定期更新系统:及时更新智能家居系统的软件和固件,修复安全漏洞。
9.3 不同厂家的智能家居设备如何实现互联互通?
- 使用标准协议:选择支持标准协议的智能家居设备,如ZigBee、Wi-Fi等,以便实现设备之间的互联互通。
- 使用智能家居平台:可以使用一些智能家居平台,如小米米家、华为智能家居等,这些平台可以对不同厂家的设备进行统一管理和控制。
10. 扩展阅读 & 参考资料
10.1 扩展阅读
- 《智能家居技术与应用》:进一步了解智能家居的技术和应用场景。
- 《人工智能与健康医疗》:探讨人工智能在健康医疗领域的应用和发展。
10.2 参考资料
- SpeechRecognition官方文档:https://pypi.org/project/SpeechRecognition/
- TensorFlow官方文档:https://www.tensorflow.org/
- SQLite官方文档:https://www.sqlite.org/docs.html