AIGC推理加速:基于非自回归生成的最佳实践
关键词:AIGC、推理加速、非自回归生成、并行解码、生成模型优化、序列生成、混合架构
摘要:本文深入探讨基于非自回归生成(Non-Autoregressive Generation, NAR)的AIGC推理加速技术。通过对比传统自回归模型的局限性,系统解析NAR的核心原理、数学模型及算法实现,结合PyTorch实战案例演示并行解码优化方法。重点阐述NAR在机器翻译、文本摘要、代码生成等场景的应用实践,分析其在生成质量与速度平衡上的关键挑战,提供从模型架构设计到工程落地的全流程最佳实践。
1. 背景介绍
1.1 目的和范围
随着AIGC技术在文本生成、图像生成、代码生成等领域的广泛应用,推理效率成为大规模落地的核心瓶颈。传统自回归模型(如GPT、Transformer Decoder)依赖逐词生成,解码速度与序列长度呈线性关系,在长文本生成场景下延迟显著。
本文聚焦非自回归生成(NAR)技术,系统解析其如何通过并行解码实现推理加速,涵盖核心原理、数学建模、算法实现、工程优化及实际应用,为开发者提供从理论到实践的完整解决方案。