更多面试题整体,请看 https://gitee.com/lilitom/ai_interview_questions/blob/master/README.md
在本文中,我将讨论KL散度的样本近似方法。我会同时介绍前向KL散度和反向KL散度哈
为什么要进行近似?
- 没有解析解:KL散度的完整形式可能没有解析解。例如,高斯混合分布就是这种情况。
- 计算复杂度高:计算完整的KL散度通常需要对整个分布空间求和。使用不需要这样做的近似方法是有用的,因为它可能会更快。
近似的标准
KL散度是衡量“真实”分布和“预测”分布之间差异的指标。“真实”分布$ p(x) 是固定的,而“预测”分布 是固定的,而“预测”分布 是固定的,而“预测”分布 q(x) 是我们可以控制的。我们将从 是我们可以控制的。我们将从 是我们可以控制的。我们将从 q(x) 中取样作为近似