大模型面试题:解释下近似KL散度的计算

更多面试题整体,请看 https://gitee.com/lilitom/ai_interview_questions/blob/master/README.md


在本文中,我将讨论KL散度的样本近似方法。我会同时介绍前向KL散度和反向KL散度哈

为什么要进行近似?

  • 没有解析解:KL散度的完整形式可能没有解析解。例如,高斯混合分布就是这种情况。
  • 计算复杂度高:计算完整的KL散度通常需要对整个分布空间求和。使用不需要这样做的近似方法是有用的,因为它可能会更快。

近似的标准

KL散度是衡量“真实”分布和“预测”分布之间差异的指标。“真实”分布$ p(x) 是固定的,而“预测”分布 是固定的,而“预测”分布 是固定的,而预测分布 q(x) 是我们可以控制的。我们将从 是我们可以控制的。我们将从 是我们可以控制的。我们将从 q(x) 中取样作为近似

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值