第四十二节:人脸检测与识别- DNN 模块使用 (加载预训练模型)

一、OpenCV DNN 模块:传统视觉与深度学习的桥梁

OpenCV 作为计算机视觉领域的瑞士军刀,早已突破传统算法的局限,其内置的 DNN 模块为开发者提供了直接调用深度学习模型的便捷接口。相较于 Haar 级联等传统方法,基于深度学习的人脸检测与识别在以下方面表现更优:

  • 准确率提升:深度学习模型能够捕捉更复杂的面部特征,适应遮挡、光照变化等挑战

  • 多任务支持:单一模型可同时输出人脸位置、关键点甚至属性信息

  • 跨框架兼容:支持 TensorFlow、Caffe、PyTorch 等主流框架的模型格式

1.1 DNN 模块核心 API 解析
# 模型加载
net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值