NLP学习路线图(二十七):Transformer编码器/解码器

一、Transformer概览:抛弃循环,拥抱注意力

传统RNN及其变体(如LSTM、GRU)处理序列数据时存在顺序依赖的瓶颈:必须逐个处理序列元素,难以并行计算,且对长程依赖建模能力较弱。Transformer的革命性在于:

  1. 完全基于自注意力机制:直接计算序列中任意两个元素之间的关系强度,无视距离

  2. 并行化计算:序列所有元素同时参与计算,极大提升训练效率。

  3. 堆叠层结构:通过多层堆叠(通常6层或更多),逐步提取更复杂的特征和表示。

Transformer的整体架构图是其精髓的直观体现:

输入序列 -> [编码器] -> 中间表示 -> [解码器] -> 输出序列
         (N个相同层)         (N个相同层)
  • 编码器:负责理解压缩输入序列(如源语言句子),将其转化为富含上下文信息的中间表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值