TensorFlow 入门实战:手把手教你训练第一个神经网络
本文将带你从零开始使用 TensorFlow 搭建并训练一个简单的神经网络,通过实战掌握深度学习的核心步骤。
一、前言
对于初学者来说,TensorFlow 是一个功能强大但看起来略显复杂的深度学习框架。本文将带你通过一个经典案例 —— 训练一个模型识别手写数字(MNIST 数据集),掌握神经网络的基本构建流程。
二、准备工作
1. 安装 TensorFlow
确保你已安装 Python(建议 3.8 及以上),然后在终端运行:
pip install tensorflow
你可以使用 CPU 或 GPU 版本,TensorFlow 会自动检测并使用可用的 GPU。
2. 导入库
import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
三、加载 MNIST 数据集
MNIST 是一个经典的手写数字图片数据集,TensorFlow 已集成:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 归一化处理(将像素值缩放到0~1之间)
x_train = x_train / 255.0
x_test = x_test / 255.0
四、构建神经网络模型
使用 Sequential
模型快速堆叠层:
model = models.Sequential([
layers.Flatten(input_shape=(28, 28)), # 将28x28的图像拉平成784向量
layers.Dense(128, activation='relu'), # 第一层,全连接128个神经元
layers.Dropout(0.2), # Dropout防止过拟合
layers.Dense(10, activation='softmax') # 输出层,对应10个数字
])
五、编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
- adam:常用的优化器
- sparse_categorical_crossentropy:适用于整数标签的分类问题
六、训练模型
model.fit(x_train, y_train, epochs=5, validation_split=0.1)
- 使用 90% 的训练数据进行训练,10% 用于验证。
epochs=5
表示训练 5 个轮次。
七、评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'\n测试集准确率: {test_acc:.4f}')
八、预测与可视化
随机查看几张测试图片与预测结果:
import numpy as np
predictions = model.predict(x_test)
# 显示前5张图片及模型预测
for i in range(5):
plt.imshow(x_test[i], cmap='gray')
plt.title(f'预测值: {np.argmax(predictions[i])} / 实际值: {y_test[i]}')
plt.axis('off')
plt.show()
九、完整代码汇总
import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
import numpy as np
# 加载并预处理数据
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 构建模型
model = models.Sequential([
layers.Flatten(input_shape=(28, 28)),
layers.Dense(128, activation='relu'),
layers.Dropout(0.2),
layers.Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=5, validation_split=0.1)
# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'测试准确率: {test_acc:.4f}')
# 预测部分图像
predictions = model.predict(x_test)
for i in range(5):
plt.imshow(x_test[i], cmap='gray')
plt.title(f'预测值: {np.argmax(predictions[i])} / 实际值: {y_test[i]}')
plt.axis('off')
plt.show()
十、结语
通过本文,你完成了第一个完整的 TensorFlow 神经网络项目。你已经掌握了从数据加载、模型构建、训练、评估到预测的核心流程。接下来可以尝试:
- 增加网络层数
- 调整超参数(如学习率、批量大小等)
- 训练其他数据集(如 CIFAR-10)
未来,你可以探索更多深度学习模型如 CNN、RNN、Transformer 等。