TensorFlow 入门实战:手把手教你训练第一个神经网络

TensorFlow 入门实战:手把手教你训练第一个神经网络

本文将带你从零开始使用 TensorFlow 搭建并训练一个简单的神经网络,通过实战掌握深度学习的核心步骤。


一、前言

对于初学者来说,TensorFlow 是一个功能强大但看起来略显复杂的深度学习框架。本文将带你通过一个经典案例 —— 训练一个模型识别手写数字(MNIST 数据集),掌握神经网络的基本构建流程。


二、准备工作

1. 安装 TensorFlow

确保你已安装 Python(建议 3.8 及以上),然后在终端运行:

pip install tensorflow

你可以使用 CPU 或 GPU 版本,TensorFlow 会自动检测并使用可用的 GPU。

2. 导入库

import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt

三、加载 MNIST 数据集

MNIST 是一个经典的手写数字图片数据集,TensorFlow 已集成:

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

# 归一化处理(将像素值缩放到0~1之间)
x_train = x_train / 255.0
x_test = x_test / 255.0

四、构建神经网络模型

使用 Sequential 模型快速堆叠层:

model = models.Sequential([
    layers.Flatten(input_shape=(28, 28)),  # 将28x28的图像拉平成784向量
    layers.Dense(128, activation='relu'),  # 第一层,全连接128个神经元
    layers.Dropout(0.2),                   # Dropout防止过拟合
    layers.Dense(10, activation='softmax') # 输出层,对应10个数字
])

五、编译模型

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
  • adam:常用的优化器
  • sparse_categorical_crossentropy:适用于整数标签的分类问题

六、训练模型

model.fit(x_train, y_train, epochs=5, validation_split=0.1)
  • 使用 90% 的训练数据进行训练,10% 用于验证。
  • epochs=5 表示训练 5 个轮次。

七、评估模型

test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'\n测试集准确率: {test_acc:.4f}')

八、预测与可视化

随机查看几张测试图片与预测结果:

import numpy as np

predictions = model.predict(x_test)

# 显示前5张图片及模型预测
for i in range(5):
    plt.imshow(x_test[i], cmap='gray')
    plt.title(f'预测值: {np.argmax(predictions[i])} / 实际值: {y_test[i]}')
    plt.axis('off')
    plt.show()

九、完整代码汇总

import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
import numpy as np

# 加载并预处理数据
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# 构建模型
model = models.Sequential([
    layers.Flatten(input_shape=(28, 28)),
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.2),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=5, validation_split=0.1)

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'测试准确率: {test_acc:.4f}')

# 预测部分图像
predictions = model.predict(x_test)
for i in range(5):
    plt.imshow(x_test[i], cmap='gray')
    plt.title(f'预测值: {np.argmax(predictions[i])} / 实际值: {y_test[i]}')
    plt.axis('off')
    plt.show()

十、结语

通过本文,你完成了第一个完整的 TensorFlow 神经网络项目。你已经掌握了从数据加载、模型构建、训练、评估到预测的核心流程。接下来可以尝试:

  • 增加网络层数
  • 调整超参数(如学习率、批量大小等)
  • 训练其他数据集(如 CIFAR-10)

未来,你可以探索更多深度学习模型如 CNN、RNN、Transformer 等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值