MATLAB中矩阵和数组的区别


前言

在 MATLAB 中,矩阵(Matrix) 和 数组(Array) 的概念既有联系又有区别,主要体现在以下几个方面。


环境配置

MATLAB下载安装教程:https://blog.csdn.net/2501_91538706/article/details/147232213

1. 数据结构本质

  • 矩阵(Matrix)
    是二维的数组,即行数和列数明确的二维结构。
    严格遵循线性代数的规则,例如矩阵乘法要求左矩阵的列数等于右矩阵的行数。
  • 数组(Array)
    是更通用的数据结构,可以是任意维度(一维、二维、三维…)。
    二维数组可以看作矩阵的扩展,而高维数组(如三维数组)则无法用矩阵直接表示。

2. 运算规则

(1)基本运算

  • 矩阵运算:遵循线性代数规则,使用标准运算符(如 *、/、^)。

A = [1 2; 3 4];
B = [5 6; 7 8];
C = A * B; % 矩阵乘法:[19 22; 43 50]

  • 数组运算:按元素执行操作,使用点运算符(如 .*、./、.^)。

A = [1 2; 3 4];
B = [5 6; 7 8];
C = A .* B; % 元素-wise乘法:[5 12; 21 32]

(2)特殊运算

  • 矩阵转置:使用单引号 '。

A = [1 2; 3 4];
A’ % 结果:[1 3; 2 4]

  • 数组转置:对于复数数组,需用 .‘’ 避免共轭。

A = [1+1i, 2+2i];
A.’ % 非共轭转置:[1+1i; 2+2i]

3. 函数与操作

  • 矩阵专用函数:
    inv(A):矩阵求逆
    det(A):行列式计算
    eig(A):特征值与特征向量
  • 数组通用函数:
    size(A):返回各维度大小(如 [2 3] 表示 2 行 3 列)
    reshape(A, m, n):重构数组维度
    cat(dim, A, B):沿指定维度拼接

4. 高维支持

  • 矩阵:仅支持二维(行 × 列)。
  • 数组:支持任意维度(如三维数组 A(2,3,4) 表示 2×3×4 的立方体结构)。
    示例:创建三维数组

A = rand(2, 3, 4); % 创建2×3×4的随机数组

5. 创建方式

  • 矩阵创建:

A = [1 2; 3 4]; % 直接创建二维矩阵

  • 数组创建:

A = [1 2 3]; % 一维数组(行向量)
B = rand(2,3,4); % 三维数组

MATLAB中矩阵和数组的区别

  • 优先使用数组:MATLAB 中数组是更通用的数据结构,支持向量化运算,代码更简洁高效。
  • 仅在必要时用矩阵:当明确需要线性代数运算(如矩阵求逆、特征值计算)时使用矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值