利用 Python 进行量化的主要步骤


python3.13 环境配置

python3.13下载安装教程:https://blog.csdn.net/2501_91538706/article/details/147315428

1. 数据获取

使用相关库从不同数据源获取金融数据。如用 yfinance 获取股票数据:

import yfinance as yf
data = yf.download('AAPL', start='2020-01-01', end='2020-12-31')  # 下载苹果公司股票数据

2. 数据处理与分析

数据清洗:处理缺失值、异常值等,比如用 pandas 填充或删除缺失值:

import pandas as pd
# 假设data是获取到的金融数据DataFrame
data = data.dropna()  # 删除包含缺失值的行

特征工程:提取或构建对量化策略有用的特征,如计算移动平均线:

data['SMA_5'] = data['Close'].rolling(window = 5).mean()  # 计算5日移动平均线

3. 策略构建

依据金融知识和市场规律构建量化交易策略。例如简单的双均线策略:

data['SMA_20'] = data['Close'].rolling(window = 20).mean()
data['Signal'] = 0.0
data.loc[data['SMA_5'] > data['SMA_20'], 'Signal'] = 1.0  # 当5日均线大于20日均线,生成买入信号
data.loc[data['SMA_5'] < data['SMA_20'], 'Signal'] = -1.0  # 当5日均线小于20日均线,生成卖出信号

4. 回测

用历史数据检验策略效果。可借助 backtrader 等框架:

import backtrader as bt
class SMA(bt.Strategy):
    params = (('maperiod', 20),)
    def __init__(self):
        self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period = self.params.maperiod)
    def next(self):
        if self.sma > self.data.close:
            self.sell()
        elif self.sma < self.data.close:
            self.buy()
cerebro = bt.Cerebro()
cerebro.addstrategy(SMA)
# 假设data是处理好的Pandas数据
data = bt.feeds.PandasData(dataname = data)
cerebro.adddata(data)
cerebro.broker.setcash(100000)
cerebro.run()

5. 优化与评估

调整策略参数优化表现,用指标评估策略,如计算收益率、夏普比率等:

# 计算策略收益率
data['Return'] = data['Close'].pct_change()
data['Strategy_Return'] = data['Signal'].shift(1) * data['Return']
data['Strategy_Return'] = data['Strategy_Return'].cumsum()

6.实盘交易

若回测效果理想,可将策略接入实盘交易系统自动执行交易,但实盘交易需考虑更多因素,如交易成本、市场流动性等,且要符合监管要求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值