2025年了,小样本学习还能做吗?看看这些登上Nature的小样本学习模型

人工智能常面临数据匮乏难题,如医疗影像、稀有物种检测等场景,仅能获取数十至数百例高质量标注样本,传统模型易因数据不足过拟合。小样本学习旨在让模型通过1-5个标注样本快速适配新任务,打破“数据依赖”。

其核心挑战在于样本少导致的特征覆盖不足,以及新旧知识迁移难题。早期度量学习方法(如孪生网络)在复杂场景中性能有限。近年,元学习与预训练技术融合成主流:Transformer的上下文学习通过提示激活知识,实现小样本推理;图神经网络结合最优传输校准数据分布。这些技术推动模型在小样本下逼近传统精度,加速向医疗、遥感等数据敏感领域落地。

如果打算深入研究,建议看看我整理的12篇小样本机器学习论文,都是前沿成果,有参考会更容易找到思路,代码也附上了,方便各位复现。

关注VX公众号【学长论文指导】发送暗号  9  领取  

【论文1:Nature】Accurate predictions on small data with a tabular foundation model

The behaviour of TabPFN and a set of baselines on simple functions

The behaviour of TabPFN and a set of baselines on simple functions

方法

Overview of the proposed method

这篇论文提出的研究理论方法是利用上下文学习(ICL)机制,基于数百万合成表格数据集训练 Transformer 架构的 TabPFN 模型,使其能在单次前向传播中完成对新数据集的训练和预测,实现对小样本表格数据的高效建模。

创新点

Overview of the TabPFN prior.

Comparison of TabPFN on our test benchmarks, containing datasets  with up to 10,000 samples and 500 features

1. 开发出TabPFN模型,在小至中等规模数据集(最多10,000样本、500特征)上性能远超传统梯度提升决策树等方法,且训练时间大幅减少。

2. 引入基于结构因果模型(SCMs)的合成数据生成方法,使模型能学习处理真实数据中的缺失值、异常值等复杂挑战。

3. 实现表格数据的上下文学习,模型具备数据生成、密度估计、特征嵌入学习和微调等基础模型能力,拓展了小样本学习的应用场景。

论文链接:https://www.nature.com/articles/s41586-024-08328-6

 

【论文2】Enhancing Unsupervised Graph Few - shot Learning via Set Functions and Optimal Transport

(a): Distribution of support and query set after performing optimal transport. (b): Model performance varies with the value of 𝑘 in top-𝑘 across all datasets

: Model performance varies with epochs across two datasets.

方法

The overall framework of our model.

这篇论文提出的研究理论方法是在元训练阶段,通过图对比学习(GCL)提取实例级特征,利用神经集合函数构建正负样本对,进行集合级对比学习以捕捉集合级特征;在元测试阶段,基于最优传输原理校准支持集与查询集的分布,缓解分布偏移问题,最终利用校准后的支持集训练分类器实现小样本节点分类。该方法通过结合实例级与集合级特征学习,并引入分布校准机制,提升了模型在无监督图小样本学习中的性能。

创新点

Training procedure of STAR

1. 提出STAR模型,首次将集合函数与最优传输结合,分别用于提取图数据中的集合级特征和校准支持集与查询集的分布,解决了现有模型忽视集合级特征和分布偏移的问题。

2. 理论证明STAR能捕获更多任务相关信息,收紧泛化误差上界,增强了模型的理论可解释性和泛化能力。

3. 设计无监督图小样本学习框架,无需基础类标签数据即可进行元训练,适用于真实场景中标签稀缺的情况,拓展了小样本学习的应用范围。

论文链接:https://arxiv.org/abs/2501.05635**

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值