深度学习什么方向最好发论文?我认为还是特征提取,尤其对于只想毕业or发低区期刊/会议的同学来说。
作为深度学习的关键任务,特征提取既重要,又很灵活。一般我们在改进baseline的时候,最简单的就是对特征提取部分进行魔改,比如改自注意力、轻量化、缝合各种经典网络结构等,这些操作可以轻松从涨分、降参数量等多个方面提高整体网络性能,非常适合要求不高的同学“水”论文。
Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed
方法:Efficient LoFTR是一种高效的半密集图像匹配方法。它使用轻量级的RepVGG网络提取粗特征和细特征,通过聚合注意力机制减少特征变换的计算量,并采用两阶段相关层来提高匹配精度。
创新点:
- 聚合注意力机制:通过深度可分离卷积和最大池化减少token数量,降低计算成本。
- 两阶段相关层:先像素级互近邻匹配,再亚像素级细化,提高匹配精度。
- 轻量级特征提取:使用单分支RepVGG网络,结合重参数化技术,提升效率。
Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases
方法:本文提出了一种基于MFDS-DETR的白细胞检测方法,使用改进的ResNet-50网络提取白细胞的多尺度特征,并通过HS-FPN模块融合高级和低级特征,提升特征表达能力。
创新点:
- 提出MFDS-DETR模型,包含四个关键部分:主干网络、HS-FPN模块、编码器和解码器。
- 设计HS-FPN模块,利用通道注意力机制将高级特征作为权重筛选低级特征,增强特征表达能力。
- 在编码器中引入多尺度可变形自注意力机制,提升模型对白细胞全局特征的提取能力。
WaveNet-SF: A Hybrid Network for Retinal Disease Detection Based on Wavelet Transform in the Spatial-Frequency Domain
方法:WaveNet-SF通过小波变换将OCT图像分解为低频和高频分量,分别提取全局结构特征和细节信息,同时利用MSW-SA模块聚焦多尺度病变区域,并通过HFFC块恢复高频细节并抑制噪声,从而提高病变检测的准确性。
创新点:
- 提出WaveNet-SF框架,通过小波变换将OCT图像分解为低频和高频分量,分别提取全局结构特征和细节信息。
- 引入多尺度小波空间注意力(MSW-SA)模块,增强模型对多尺度病变区域的聚焦能力。
- 设计高频特征补偿块(HFFC),恢复高频细节并抑制噪声,提高病变检测的准确性。
Exploring State Space Model in Wavelet Domain: An Infrared and Visible Image Fusion Network via Wavelet Transform and State Space Model
方法:W-Mamba通过小波变换将图像分解为低频和高频成分,利用状态空间模型处理高频特征以提取长距离依赖关系,并通过跨模态特征注意力调制模块增强不同模态间的特征交互,从而实现全局特征和局部细节的有效提取。
创新点:
- 提出Wavelet-SSM特征提取模块,结合小波变换和状态空间模型,同时提取全局特征和局部细节。
- 设计跨模态特征注意力调制模块,增强不同模态间的特征交互和融合。
- 通过小波变换分离高频和低频信息,利用状态空间模型处理高频特征,有效提取长距离依赖关系。