机器学习的本质是什么?

省流:机器学习本质上不仅仅是一种技术或工具,而是一种全新的学习方式。它的核心在于从海量数据中提取知识,通过算法自动发现模式,不断优化以逼近真实情况。

首先得承认,机器学习真的火了。谷歌内嵌机器学习技术推出无人驾驶汽车、阿里推出DTPAI、百度金融大数据风控、腾讯征信人脸识别技术......互联网巨头们急不可耐地布局机器学习,学术界、金融界对机器学习的兴趣同样浓烈。但究其核心,机器学习到底是什么呢?

一、机器学习的本质

我试着从以下几个角度来阐释。

1、数据与模式

机器学习的第一层含义就是从海量的数据中找到某种模式。人类看世界,总是喜欢找规律,机器学习也不例外。给定大量的输入和输出数据,机器试图找出其中的规律。

华盛顿大学计算机科学与工程学教授,国际机器学习协会的联合创始人Pedro Domingos在A Few Useful Things to Know About Machine Learning” by Pedro Domingos(机器学习那些事)中就详细介绍了机器学习的基本概念,他强调机器学习的核心是将知识从数据中提取出来,并强调了算法的选择与数据之间的关系。

2、算法而非编程

传统编程是告诉机器如何做事,而机器学习则是让机器自己去“学”如何做事。你提供数据和目标,然后机器自己找最佳的方法。

3、优化过程

其实机器学习在很大程度上就是一个不断的优化过程。你有一个模型,它初始可能很差,但通过不断的学习,它试图使自己的预测尽可能接近真实情况。

4、统计的美学

从统计学的视角,机器学习就是一个统计决策问题。它不仅仅是找规律,更多的是在不确定性中做出最好的猜测

5、深度学习与表示

深度学习是机器学习的一个分支,但它强调的是自动学习数据的良好表示形式。一个好的表示可以让复杂的问题变得简单。

总结一下,机器学习的本质其实是一个“学习”的过程。它并不关心答案是从哪里来的,只关心如何从数据中获得答案。这种从经验中学习的能力,让机器在很多任务上都能达到甚至超过人类的表现。

当然,机器学习并不是银弹,它也有自己的局限性。但无论如何,它都打开了一个全新的、充满无限可能的世界。

二、机器学习的运用

可能对很多外行来说,机器学习会比较陌生,但实际上,这个时代的很多技术革新都是机器学习的运用。举个最简单的例子:电商。

电商领域利用机器学习来找到用户,根据用户的购物历史、浏览历史、搜索行为等数据,为用户推荐他们可能感兴趣的产品。这就是,为什么我们逛某宝总会自动弹出一些恰好能刺激你消费欲望的商品。

在电商板块还有一个运用也比较常见,就是价格优化。利用机器学习帮助电商企业实时调整价格,以最大化利润或市场份额,同时还能贴心的考虑到库存、季节性和竞争因素。

至于客服机器人这种,就过于简单,不赘述了。

最新的关于机器学习的运用也值得一提,比如,有大佬在论文Infinite Photorealistic Worlds using Procedural Generation(使用程序生成的无限逼真世界)中提到了一个叫Infinigen的程序生成器,它可以生成自然世界逼真3D场景,用于为各种计算机视觉任务生成无限的、多样化的训练数据,划重点,它免费且开源。关于它的具体运用,可以用来模拟天气等自然环境、建筑环境、人造物体,尤其对于建模而言,意义重大。
 

三、让自己成为AI技术变化的受益者

这里以程序猿为例,我们都知道AI的迭代速度是很快的,它已经在多个领域产生了深远的影响。与其关联最为紧密的就是程序猿们,从表面上看,机器学习与程序员之间的关系,就是工具与使用者。

机器学习是一个工具或技术,可以用来解决某类问题。就像程序员可以使用数据库来存储和查询数据,让使用机器学习模型来识别图像、预测趋势或生成文本。

而在我们了解机器学习的本质后,我们会发现,机器学习需要算法和数据,这些通常要靠程序员来负责实施,处理数据,将算法嵌入到应用程序或系统中。所以,如果说AI 是个大型工厂,程序员就是给它提供原材料的供应商

在这里我举一些例子来看看程序员如何灵活运用AI。

1、灵活运动AI技术

(1)自动代码生成利用AI训练成自动生成简单的代码片段,这意味着一些重复性和标准化的编程任务可能被自动化处理。

(2)代码审查与错误修复:AI工具,如DeepCodeKite,已经可以自动检查代码中的错误或建议更好的编程实践,这可能会减少程序员在代码审查和调试中的工作量。

(3)自动化测试:运用AI帮助自动化软件测试,快速识别错误,这可能会改变质量保证和测试工程师的工作方式。

(4)系统维护与优化:利用AI来预测系统失败、性能瓶颈等,自动进行调优或提前通知团队。

虽说看起来,程序员是AI技术的最大受益者之一,但它为程序员带来了新的挑战,如数据不平衡、模型解释性、避免偏见等问题。同时,它也为他们打开了大量新的职业机会和创新可能。

2、持续学习机器学习理论知识

我们都知道,不是所有的程序员都是机器学习专家,但随着AI和机器学习技术的日益普及,许多程序员开始学习这一领域。这样,他们不仅可以写代码,还可以为机器学习项目提供有价值的见解。这就要求我们不断地学习,至少要让自己掌握基础的机器学习理论,才能更好地“控制”它。否则,就像极了一个能力一般的领导,不懂得如何让一位极为出色的员工发挥出最大的价值。

3、实操掌握技术核心

另外,实操也是让自己灵活掌握AI运用的关键。越是运用,你越会感觉AI仿佛是一个藏宝库,总有一个板块亟待挖掘。我们可以利用开源库如TensorFlowPyTorchscikit-learn进行实践,通常可以使用这些工具来构建和训练机器学习模型,可以参考网上很多大佬发的帖子,参照着他们的步骤进行操作,在了解其原理后,可以试着自己来训练模型。

当你练出属于自己的模型后,你会发现自己的工作效率直接上升了很多个level。与此同时,也不难发现一个新的领域:AI模型的开发与优化。AI并不是自发地出现的。需要专家来设计、训练、测试和优化这些模型,这是不是也为程序员提供了一个新的机会?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值