LeetCode 98. 验证二叉搜索树(Validate Binary Search Tree)

98. 验证二叉搜索树

📘题目描述

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左子树只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:root = [2,1,3]
输出:true

示例 2:

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

💡解题思路:递归 + 上下界约束

🧠核心思想

对每个节点 node

  • 它的值必须满足:left < node.val < right,其中 leftright 是从父节点继承而来的合法范围

  • 左子树的范围是:(left, node.val)

  • 右子树的范围是:(node.val, right)

✅Python 实现 

class Solution:
    def isValidBST(self, root: Optional[TreeNode]) -> bool:
        def helper(node, left, right):
            if not node:
                return True
            if not (left < node.val < right):
                return False
            return helper(node.left, left, node.val) and \
                   helper(node.right, node.val, right)

        return helper(root, float('-inf'), float('inf'))

⏱️复杂度分析 

项目复杂度说明
时间复杂度O(n)每个节点访问一次
空间复杂度O(h)递归栈空间,最坏 O(n)

其中 n 是节点数,h 是树的高度。

📌常见错误点总结 

错误点正确做法说明
忽略了非直接子节点的约束不能只比较左节点 < 当前节点 < 右节点
没有传递父节点的范围信息每一层必须传递上下界
使用中序遍历判断,未记录前一个值中序法也可做,但需记录 prev 值来比较

🆚拓展:中序遍历法也可判断 BST?

是的!中序遍历二叉搜索树会得到严格递增序列

class Solution:
    def isValidBST(self, root: Optional[TreeNode]) -> bool:
        self.prev = None
        def inorder(node):
            if not node:
                return True
            if not inorder(node.left):
                return False
            if self.prev is not None and node.val <= self.prev:
                return False
            self.prev = node.val
            return inorder(node.right)
        return inorder(root)

🎯总结

  • ✅ 建议掌握两种方式:

    • 递归上下界法(推荐)

    • 中序遍历递增法

  • 本题是二叉树中最经典的结构合法性判断题,是 BST 类型题目的基础。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值