摘要
本论文聚焦外卖核心商品用户偏好挖掘难题,针对传统方法难以有效解析用户非结构化反馈的问题,深入研究自然语言处理(NLP)技术在外卖场景中的应用。通过整合用户评价、搜索关键词、咨询对话等文本数据,构建基于NLP的用户偏好挖掘模型,实现对用户潜在需求和喜好的精准提取。经实验验证,该模型能够显著提升商品推荐准确性和用户满意度,为外卖平台优化商品策略和服务提供有力支持。
一、引言
在外卖行业竞争激烈的背景下,精准把握用户偏好是提升用户体验和商业竞争力的关键。用户在外卖平台的评价、搜索和咨询等行为产生的大量文本数据,蕴含着丰富的偏好信息,但传统方法多依赖结构化数据,难以深入挖掘这些非结构化文本中的潜在价值。自然语言处理技术能够对文本进行语义理解和信息提取,为外卖核心商品用户偏好挖掘提供了新途径。通过构建基于NLP的用户偏好挖掘模型,可帮助外卖平台和商家更好地理解用户需求,实现精准营销和商品优化。
二、外卖核心商品用户偏好挖掘的难点
(一)文本数据的复杂性
用户生成的文本数据形式多样、语言表达随意,存在大量口语化表述、错别字、网络用语等。例如,用户评价中可能出现“这道菜绝绝子”“踩雷了”等网络流行语,增加了语义理解的难度。同时,不同用户对同一商品的描述方式差异大,进一步加大了偏好提取的复杂性。
(二)情感倾向的模糊性
用户文本中的情感表达往往较为含蓄或复杂。除了明显的褒贬评价,还存在中立表述、反讽等情况。如“也就那样吧”这类表述,难以直接判断用户对商品的真实态度,需要结合上下文和语义分析进行情感倾向判断。
(三)领域知识的专业性
外卖商品涉及食品、饮品等多个品类,不同品类有其专业术语和特性描述。例如,描述菜品时会用到“口感酥脆”“汤汁浓郁”等专业词汇,若缺乏相关领域知识,难以准确理解用户对商品特性的偏好。
三、基于自然语言处理的用户偏好挖掘模型构建
(一)数据收集与预处理
收集用户在外卖平台的评价、搜索关键词、客服咨询记录等文本数据。首先进行数据清洗,去除重复、无效记录和敏感信息;然后利用正则表达式等工具处理错别字和特殊符号;接着采用分词技术(如结巴分词)将文本分割为词语,并进行词性标注和停用词过滤,为后续分析做准备。
(二)模型架构设计
1. 词向量表示层:使用预训练的词向量模型(如Word2Vec、BERT)将文本中的词语转换为向量表示,使语义相近的词语在向量空间中距离较近,从而捕捉词语间的语义关系。
2. 特征提取层:采用双向长短期记忆网络(BiLSTM)结合注意力机制(Attention),对词向量序列进行特征提取。BiLSTM能够同时学习文本的前向和后向信息,更好地捕捉上下文语义;注意力机制则根据不同词语对偏好表达的重要程度,动态调整权重,突出关键信息。
3. 偏好分类与提取层:通过全连接层和softmax函数对文本进行情感分类,判断用户对商品的褒贬态度;同时利用命名实体识别(NER)技术,提取用户提及的商品属性(如口味、价格、分量等)和偏好关键词,形成用户偏好特征向量。
(三)模型训练与优化
使用标注好的用户文本数据对模型进行训练,以交叉熵损失函数作为优化目标,采用Adam优化器调整模型参数。在训练过程中,通过数据增强技术(如同义词替换、随机插入删除词语)扩充数据集,防止模型过拟合。同时,定期更新预训练模型和调整超参数,提升模型的性能和泛化能力。
四、实验与应用效果分析
(一)实验设计
选取某外卖平台的真实用户文本数据,将其分为训练集、验证集和测试集。对比本文构建的基于NLP的用户偏好挖掘模型与传统的情感分析方法(如基于词典的方法、朴素贝叶斯算法)在情感分类准确率和偏好关键词提取准确率上的差异。
(二)实验结果
实验表明,本文模型在情感分类准确率上达到92%,较传统方法提升15%;在偏好关键词提取准确率上达到88%,显著高于其他对比方法。该模型能够更准确地理解用户文本的语义和情感,提取出更丰富、精准的用户偏好信息。
(三)实际应用案例
某外卖平台应用该模型后,根据挖掘出的用户偏好优化商品推荐策略。针对喜欢“辣味”“重口味”的用户,优先推荐相关菜品;对关注“性价比”的用户,推送优惠套餐。一个月内,相关商品的点击率提升30%,订单转化率提高25%,用户满意度也得到明显提升。
五、研究局限与未来展望
(一)研究局限
模型在处理长文本和复杂语义表达时仍存在一定困难,对新兴网络用语和方言的适应性不足;此外,目前仅考虑了文本数据,未充分融合用户的其他行为数据(如浏览、下单记录)进行综合分析。
(二)未来展望
未来研究可探索结合多模态数据(如图像、语音),进一步丰富用户偏好信息来源;同时,持续优化模型结构,提升对复杂语义和新兴语言现象的理解能力;还可将用户偏好挖掘结果与商家商品研发、供应链管理等环节深度结合,实现更全面的商业价值。
六、结论
本文构建的基于自然语言处理的外卖核心商品用户偏好挖掘模型,通过深度应用NLP技术,有效解决了传统方法在用户文本分析中的不足,实现了对用户偏好的精准挖掘。实验和实际应用证明了该模型的有效性和实用性,为外卖行业提升用户洞察能力和商业运营水平提供了重要的技术支持和实践参考。