- 博客(66)
- 收藏
- 关注
原创 第一次参加kaggle比赛一定要看!附kaggle7月、8-9月、11月最新比赛推荐
Kaggle是全球顶级数据科学竞赛平台,推荐参加原因包括:提升代码分析能力、掌握模型优化方法、积累优质项目经历助力申请。比赛规则支持个人或3-5人组队,使用Python进行数据探索和模型训练,全年滚动报名。备考建议:设置渐进目标、学习高分kernel、论坛提问、先独立后组队发展技能。7-11月有最新比赛,低排名无需焦虑,重点在于学习成长。详情可扫码咨询获取比赛推荐和备考攻略。
2025-09-25 18:01:27
416
原创 2025年零基础学深度学习入门到实践的完整路径!
深度学习是机器学习的一个分支,其核心是通过构建多层神经网络模型,自动从数据中学习复杂特征表示。与传统机器学习需要人工设计特征不同,深度学习模型能够通过反向传播算法自动优化特征提取过程。这种能力使其在图像识别、自然语言处理等领域取得了突破性进展。
2025-09-19 11:15:30
973
原创 深度学习四大经典书籍(最新版)AI工程师必备书单:从理论到实战一网打尽!
第三版所有代码使用最新的scikit-learn 和 Keras 版本,新增 ResNeXt, DenseNet, MobileNet,CSPNet, EfficientNet 等视觉模型,自然语言处理覆盖 Switch Transformers, DistilBERT, T5, PaLM,ViT, 概述 CLIP,DALL·E, Flamingo, GATO 等多模态模型。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。:涵盖计算机视觉、序列建模、强化学习,附带高质量开源代码。
2025-09-18 11:42:58
1875
原创 涨点神器,150+即插即用模块和源码总结!
【深度学习创新模块速览】研究团队提出"模块缝合"创新方法,通过组合150+即插即用模块(包括注意力机制、Mamba、特征融合等)实现快速性能提升。重点推荐:1)AgentAttention平衡计算效率与表示能力;2)ARConv自适应卷积提升遥感影像处理;3)ConDSeg增强医学图像分割;4)nnMamba融合CNN与SSM优势;5)BCN归一化技术改进分类任务;6)MSGNet模型优化时序预测。所有模块按任务分类,配套提供论文合集与项目代码资源包。
2025-09-17 17:47:38
898
原创 图像相似性搜索比较:EfficientNet vs. ViT vs. DINO-v2 vs. CLIP vs. BLIP-2
本文比较了EfficientNet、ViT、DINO-v2、CLIP和BLIP-2五种深度学习模型在图像相似性搜索中的表现。实验使用Flickr30k数据集和Faiss库,通过特征提取和相似性搜索验证不同架构模型的性能差异。结果显示:CNN架构的EfficientNet主要关注像素信息;ViT表现优于CNN但仍有局限;DINO-v2能准确识别前景物体;CLIP受文本信息影响较大;BLIP-2综合表现最佳,能有效捕捉高层次语义。建议根据任务需求选择模型——聚焦物体识别时使用DINO-v2,需要理解复杂场景时选
2025-09-13 09:43:09
1014
原创 虫都能学会!OpenCV+YOLO 实时目标检测,
【毕业设计选题攻略】视觉类方向是首选,因其成熟度高、资源丰富,能确保"完成优先"。核心建议:1.选择目标检测、图像分割等有现成源码和数据的方向;2.避开高难度选题,先保证基础成果再优化;3.关键评估标准:是否有可用数据集和参考代码。提供配套学习大礼包(源码+数据集+指南),帮助规避90%常见问题。记住毕设黄金法则:落地比创新更重要,选对方向就成功了一半!
2025-09-11 09:59:24
566
原创 终于把神经网络算法搞懂了!!
神经网络算法是一种模拟人脑神经元结构的机器学习方法,通过输入层、隐藏层和输出层处理数据,利用激活函数引入非线性特征。其核心在于权重调整和反向传播机制,通过梯度下降优化模型参数。文章以鸢尾花数据集为例,演示了使用Python的MLPClassifier构建神经网络分类器、评估模型性能以及可视化决策边界的完整流程,强调了数据标准化和超参数调优的重要性。该算法适用于图像识别、自然语言处理等复杂任务,是深度学习的核心技术之一。
2025-09-10 17:46:03
869
原创 从菜鸟进阶到高手的17个机器学习实战项目推荐
本文分享了17个从初阶到高阶的机器学习实战项目,包含源码和数据集。初阶项目包括鸢尾花分类、贷款预测、泰坦尼克号生存分析等;中阶项目涵盖音乐流派分类、比特币价格预测、Uber数据分析等;高阶项目涉及情感分析、语音情绪识别、非法捕鱼监测等。这些项目能帮助学习者将理论知识转化为实践能力,通过数据分析、模型构建等环节,系统提升机器学习技能。每个项目都配有详细说明,便于快速入门和理解应用场景。
2025-09-08 18:09:09
795
原创 一文带你了解机器学习十大算法!
本文介绍了机器学习十大经典算法,包括线性回归、K近邻、朴素贝叶斯、逻辑回归、支持向量机、决策树、随机森林、GBDT、XGBoost和K-Means。对每个算法从原理、优缺点、适用场景三方面进行说明,并提供了Python代码示例。这些算法涵盖了监督学习、无监督学习等不同类别,适用于分类、回归、聚类等任务。文章还提供了获取机器学习入门书籍和AI科研指导的方式,帮助初学者系统学习。
2025-09-06 10:49:06
897
原创 一篇适合新手入门人工智能路线
本文系统梳理了人工智能学习路径,分为四个阶段:1)机器学习基础,掌握端到端建模流程和Sklearn等工具;2)深度学习进阶,学习CNN/Transformer等算法及PyTorch框架;3)生成式AI,研究LLM、提示工程等前沿技术;4)模型部署,掌握MLOps全流程管理。每个阶段均推荐配套学习资源和实践平台(Kaggle/UCI等),强调需补充集成学习、领域知识等内容,并通过创建GitHub作品集来巩固学习成果。文中特别指出要平衡理论理解与工具应用,建议从经典教材入手,逐步过渡到最新研究论文和行业实践。
2025-09-04 16:19:42
913
原创 太简单了!28张图全解深度学习知识!
本文系统介绍了深度学习的基础知识与应用,分为三大部分:1. 深度学习基础(01-13):涵盖监督学习、神经网络架构、激活函数选择、参数初始化、偏差与方差问题、正则化方法、优化算法和超参数调整等核心概念;2. 卷积网络(14-22):详细讲解CNN原理、经典网络结构(LeNet、AlexNet等)、特殊网络(ResNet等)、目标检测算法和人脸识别技术;3. 循环网络(23-28):重点介绍RNN原理、LSTM/GRU结构、词嵌入方法和序列到序列模型在NLP中的应用。文章通过清晰的信息图展示深度学习知识体系,
2025-09-03 15:56:15
542
原创 杀疯了!融合LSTM与Transformer时间序列预测 !!
【摘要】本文提出了一种融合LSTM和Transformer的时间序列预测方法,通过双分支结构分别捕捉局部时序特征和全局依赖关系。LSTM模块擅长处理短期波动,而Transformer的自注意力机制能有效建模长期趋势。研究采用加权融合策略整合两种特征,并构建了包含多层堆叠、滑动窗口等技术的多尺度建模框架。实验使用合成的多频率正弦波数据集(含低频趋势、中频周期和高频噪声)验证模型效果,通过均方误差损失函数进行端到端训练。可视化结果显示,该融合模型能较好拟合数据中的多尺度特征,预测误差分布均匀。文中还详细推导了L
2025-09-03 15:09:41
1057
原创 机器学习入门学习教程(附中文版学习笔记)
吴恩达机器学习课程是入门经典,但英文课件可能造成学习障碍。配套中文笔记与视频对应,涵盖10周核心内容:从基础概念(1周)、线性回归与梯度下降(2周)、逻辑回归(3周),到神经网络(4-5周)、模型评估(6周)、SVM(7周)、聚类降维(8周),以及应用技巧(9-10周)。重点标注难度等级(-**),建议选择性学习,2个月可系统掌握机器学习基础。笔记提炼精华,中英对照能显著提升学习效率。
2025-08-30 11:32:48
604
原创 图解LLM(AI大模型)的工作原理
本文通过条件概率的实例(如网球/足球偏好)解释了LLM(大语言模型)的工作原理。LLM基于条件概率预测下一个单词,通过计算给定上下文的单词条件概率分布来选择最可能的输出。文章介绍了损失函数(交叉熵、负对数似然)用于优化模型预测,并重点讨论了温度参数(temperature)的作用:低温使输出更确定但缺乏创意,高温增加随机性和多样性。最后通过代码示例展示了温度如何影响softmax函数对单词概率分布的调整,指出学习LLM需要概率统计等数学基础。
2025-08-30 11:21:11
663
原创 大模型学习路线(2025最新)从零基础入门到精通,看完这一篇就够了
本文介绍了一份2025最新版大模型学习路线,帮助AI新人系统掌握大模型技术。学习分为四个阶段:10天初阶应用,30天高阶应用,30天模型训练,20天商业闭环。内容涵盖从基础认知到提示工程、RAG系统搭建、模型微调训练,再到部署应用和商业落地的完整知识体系。学习资源包括书籍文档、视频教程、项目源码和面试题库,适合零基础学习者。完整资料可通过文末二维码免费领取。
2025-08-26 12:19:11
790
原创 一文讲清楚大模型中8个关键词及原理:LLM、Transformer、GPT、Bert、预训练、微调、深度学习、Token
大模型(LLM)是基于Transformer架构的深度学习模型,通过海量数据预训练和微调,具备强大的自然语言处理和生成能力。GPT专注于解码器结构,擅长文本生成;BERT基于编码器,侧重文本理解。核心概念包括预训练(通用语言学习)、微调(任务适配)、自注意力机制和词元处理。大模型技术正推动AI领域变革,但其本质仍是统计模式匹配而非真正理解。掌握这些基础概念有助于理解当前AI发展脉络。
2025-08-25 18:08:46
1090
原创 通俗讲解深度学习和神经网络!
本文用通俗语言向非技术人员介绍深度学习和神经网络。人工智能(AI)是让机器具备人类智慧的科学,机器学习是实现AI的方法,而深度学习则是机器学习中最有效的技术之一。深度学习基于神经网络算法,通过增加网络层数("深度")来提升性能,在图像识别、语音处理等领域表现突出。目前主流的深度学习框架包括Google的TensorFlow和Facebook的PyTorch,广泛应用于计算机视觉、自然语言处理、语音识别和自动驾驶等领域。深度学习之所以成功,得益于大数据和强大算力(如GPU)的支持,使其能够
2025-08-25 17:46:27
1551
原创 研究生方向:在传统赛道与交叉领域间寻找破局之路
AI研究生面临传统与新兴方向的就业选择困境。传统CV/NLP赛道虽竞争激烈,但需求稳定,仍是大厂算法岗主力,就业确定性较高;而AI+生物等交叉领域虽前景广阔,但当前岗位稀缺且多倾向博士,硕士就业难度大。建议明确职业规划:就业导向者优先深耕传统方向,积累项目与实习;学术兴趣者可投入交叉领域,但需做好长期准备。行业竞争本质在于持续学习与适应能力,关键在于结合自身优势做出理性选择并专注深耕。
2025-08-23 14:52:43
488
原创 全面整理!机器学习常用的回归预测模型
本文系统介绍了回归预测建模方法,包括线性和非线性模型。线性模型部分详述了最小二乘回归、Lasso、岭回归、弹性网络等及其优化算法;非线性模型重点讨论了集成树模型(随机森林、深度森林等)、支持向量机、KNN和神经网络等方法,并比较了它们在处理异构数据、计算效率和泛化性能上的优势。文章还涵盖了一些新兴的深度学习模型(如TabNet、GATE)及其在表格数据预测中的应用,为回归预测任务提供了全面的方法选择和实现指导。
2025-08-22 11:59:37
917
原创 学习深度学习之前要不要想学习机器学习?到底应该先学哪个?
学习路径选择取决于研究方向。处理结构化数据(表格)建议从机器学习入门;若专注图像或文本数据,可直接学习深度学习,掌握线性/逻辑回归后快速转入神经网络实践。推荐学习步骤:1)《深度学习入门》打基础;2)学习PyTorch框架并动手实践;3)阅读领域论文,建立baseline模型并持续优化。
2025-08-20 12:03:51
420
原创 一文带你了解深度学习中经典神经网络结构--CNN、RNN、LSTM、Transformer!
本文系统介绍了深度学习中四种经典神经网络结构:1) CNN:通过卷积核提取图像局部特征,池化层降维,适用于图像处理任务;2) RNN:具有记忆功能的循环结构,擅长处理序列数据;3) LSTM:改进的RNN,通过门控机制解决长程依赖问题;4) Transformer:基于自注意力机制的并行架构,突破序列处理瓶颈。文章详细解析了各网络的结构组成、工作原理及典型应用场景,并提到BERT和GPT等前沿模型都基于Transformer。最后提供了AI科研入门方案的获取方式。
2025-08-20 11:35:45
1002
原创 万字解析!一文带你了解目前最火的多模态!
多模态技术指处理多种数据形式(如文本、图像、音频等)的信息处理方法,旨在模拟人类多感官认知方式。其核心技术包括模态表示(将不同模态数据转换为计算机可理解形式)、对齐(建立跨模态对应关系)和融合(整合多模态信息)。多模态学习可分为联合表示(统一向量空间)和协同表示(各自空间建立联系)。典型应用包括图像描述生成、视觉问答、跨媒体检索等任务,在自动驾驶、情感计算等领域具有重要价值。该技术通过融合多源信息,显著提升AI系统的感知与理解能力。
2025-08-19 17:42:19
690
原创 研一结束了还没有研究方向,深度学习学的云里雾里,只想水篇论文毕业而已,这种情况应该怎么学?
针对研究生学习困境,文章提出两点建议:1.主动与导师沟通研究方向和问题;2.系统学习深度学习知识。推荐了包含数学基础、Python、机器学习、深度学习框架PyTorch等的学习路径及资源(如《神经网络与深度学习》、刘二大人PyTorch教程等),并建议从优质论文复现开始科研。文末提供打包好的学习资源和思维导图供领取。
2025-08-19 17:22:37
332
原创 机器学习看完这些你就入门了!
《统计学习方法》是一本适合机器学习初学者的经典教材,全书系统讲解了感知机、K近邻、朴素贝叶斯、决策树等核心算法,涵盖监督学习、正则化、交叉验证等关键概念。作者李航从数学角度深入浅出地阐释原理,帮助读者建立完整知识框架。重点章节包括逻辑回归、SVM、提升算法等内容,部分高阶章节可选择性学习。完整阅读约需1-2个月,对提升机器学习理解能力大有裨益。文末提供教材PDF获取方式。
2025-08-16 15:27:17
264
原创 kaggle比赛案例:用人工智能帮老师批改作文 提高学生阅读写作水平
人工智能助力教育评估:构建阅读可读性分析模型 摘要:本文介绍了如何利用人工智能技术构建模型评估3-12年级阅读材料的可读性。通过CommonLit组织提供的数据集,参赛者需要开发算法准确预测文本复杂度,帮助教师快速匹配适合学生阅读水平的材料。方案采用预训练语言模型(Roberta-base)进行继续预训练和回归任务微调,通过多层感知器和dropout策略优化模型性能。评估采用均方根误差(RMSE)指标衡量预测值与真实评分的差异。该技术可显著提升教学效率,使教师能针对性地调整教学方法,帮助学生更好地提高阅读能
2025-08-15 17:41:20
593
原创 Transformer,一个神奇的算法模型 !!
Transformer是一种革命性的深度学习模型,通过自注意力机制高效处理序列数据。它能同时关注输入序列中各部分的关系,克服了传统RNN/LSTM串行处理的限制。模型由编码器和解码器组成,核心是多头注意力机制,通过计算查询、键、值的相似度权重来捕捉长距离依赖关系。本文用"猫坐在毯子上"的实例形象说明其工作原理,并提供了PyTorch实现代码和可视化示例,展示了注意力权重计算过程。Transformer在自然语言处理任务中表现出色,支持并行计算,为机器翻译、文本生成等任务提供了强大框架。
2025-08-14 14:55:26
686
原创 2025年多目标优化最新创新点有哪些?
【多目标优化前沿进展速览】研究聚焦5大创新方向:①强化学习动态权衡目标权重(深度Q网络选进化算子);②元学习自适应调整目标优先级(终身元学习+遗传算法);③GNN建模目标依赖关系(图神经网络解构优化问题);④生成对抗博弈平衡目标冲突(GAN+NSGA-II快速收敛);⑤自监督学习挖掘潜在目标(无监督特征提取)。配套22篇顶会论文及开源代码,涵盖算法改进与工程应用,显著提升跨问题泛化能力与收敛效率(部分方案提速50%)。适合研究者快速切入前沿领域。
2025-08-12 11:22:30
999
原创 普通程序员的大厂突围指南! Java进大厂私教1v1陪跑
摘要: 本文针对程序员常见的学历、工作重复性和公司背景等职业发展困境,提出了4套实战方法帮助突破瓶颈。通过打造技术标签替代学历背书、将重复工作转化为成长证明、提炼中小厂经验中的核心能力,以及利用技术输出和精准内推,普通程序员也能成功进入大厂。文章强调,关键在于用方法论代替焦虑,通过系统性的学习和实战优化,将普通背景转化为核心竞争力。
2025-08-11 12:10:13
1088
原创 3分钟带你搞清 LSTM 的计算过程和计算图
LSTM(长短时记忆网络)通过创新的门控机制解决了RNN的长时依赖问题。其核心在于三个关键门控单元:遗忘门决定保留哪些历史信息,输入门筛选新的重要信息,输出门控制当前记忆的输出。记忆单元通过加法更新而非RNN的乘法运算,有效避免了信息稀释。这种"记忆单元+三门控"的设计使LSTM能够精准控制信息流,既能保存长期依赖关系,又能灵活更新短期记忆,在自然语言处理、语音识别等序列任务中表现出色。理解LSTM的计算流程有助于深入掌握时序数据处理的核心原理。
2025-08-11 11:44:45
1074
原创 真心分享!纯新手怎么简单高效入门机器学习深度学习?
本文针对零基础学习机器学习和深度学习的困惑,提出了一套系统学习计划。首先强调前置基础的重要性,包括Python编程(30天内可掌握)和三大数学基础:统计学、线性代数、微积分。推荐使用菜鸟教程学习Python,配合《白话机器学习》等书籍建立数学基础。接着需要掌握Numpy、Pandas等工具库和PyTorch/TensorFlow框架,推荐使用带注释的代码学习网站。机器学习入门建议结合视频讲解与《西瓜书》,实战推荐Kaggle竞赛项目;深度学习推荐三本经典教材,计算机视觉方向建议OpenCV结合论文学习。整个
2025-08-09 14:36:45
636
原创 10分钟学会使用YOLO及OpenCV实现目标检测
本文介绍了YOLO(You Only Look Once)目标检测算法,这是一种在计算机视觉领域表现优异的单阶段检测算法。YOLO算法将目标检测视为回归问题,能够同时预测边界框坐标和类别概率。文章对比了YOLOv3与R-CNN系列、SSD等算法的优缺点:YOLO在速度上有优势(GPU可达45FPS),但在处理小物体和密集目标时效果较差。教程内容包含使用YOLO结合OpenCV和Python实现图像和视频流中的目标检测,并提供了项目结构说明和代码实现要点。最后给出了算法选择建议:需要高精度时选择Faster
2025-08-07 11:44:46
721
原创 一口气彻底搞懂深度学习-从神经网络入门(动图讲解)
深度学习三巨头(Hinton、LeCun、Bengio)重新提出"深度学习"概念,本质是深度神经网络。文章首先介绍1957年提出的感知机模型(双层线性网络),随后详细解析前馈神经网络(FFNN/MLP)的三层结构(输入层、隐藏层、输出层)及其数学表达式。重点阐述了FFNN的学习过程:随机初始化参数后,通过前向传播、反向传播和优化算法迭代更新参数。最后指出FFNN通过隐藏层处理非线性问题,在Transformer等模型中发挥特征提取与整合作用。文章强调实践对理解模型训练流程的重要性。
2025-08-06 17:58:37
749
原创 值得熬夜看完!解决你90%机器学习模型效果不佳的问题!!
《特征工程实战指南》是一本实用教程,深入讲解特征工程的核心技术与应用。涵盖数据预处理、特征构建、文本/时序特征处理等关键环节,提供70+实战方法,并分析不同模型对特征的需求差异。书中结合代码实现与原理说明,帮助读者根据模型类型优化特征设计,避免常见错误。适合希望提升模型效果的开发者学习参考。
2025-07-31 09:40:38
220
原创 清华等开源YOLOv13:基于超图增强的实时目标检测
YOLOv13论文提出新型实时目标检测算法,通过超图增强自适应视觉感知技术提升检测性能。研究团队来自清华、***科大等顶尖机构,采用HyperACE机制捕捉特征间高阶关联,结合FullPAD信息流范式和轻量化设计,在MSCOCO数据集上验证了性能优势。YOLOv13-N的mAP达41.6%,较前代提升1.5%-3.0%,同时保持高效率。配套代码已开源,为实时目标检测领域带来新突破。
2025-06-28 10:57:32
606
原创 时间序列预测模型与特征提取简述
本文系统介绍了时间序列分析方法及应用工具。主要内容包括:时间序列的定义与构成要素;常见分析模型(AR、MA、ARMA、ARIMA等传统模型和LSTM等深度学习模型)的原理及优缺点;时间序列特征提取方法(统计特征、时域/频域特征等);以及多个开源工具库(如Python的Statsmodels、R的TimeSeries、tsfresh等)的应用场景。文章通过理论阐述与代码示例相结合的方式,为时间序列分析提供了全面参考,涵盖从基础概念到前沿技术的完整知识体系。
2025-06-25 12:06:58
921
原创 真得收藏!深度学习模型一网打尽!
本文系统梳理了深度学习核心模型,从基础的感知机、多层感知机(MLP),到处理网格数据的CNN和序列数据的RNN/LSTM/GRU,再到生成模型VAE/GAN/StyleGAN,以及Transformer架构的BERT/GPT等NLP模型。特别介绍了U-Net、EfficientNet等专用网络,还涵盖了强化学习中的Q学习和DQN。文章不仅解析了各模型的结构原理与适用场景,如CNN用于图像特征提取、LSTM解决长期依赖问题,还对比了相关模型差异(如LSTM与GRU)。
2025-06-12 10:14:18
790
原创 机器学习该怎么入门?
很多人会想着那就要从最基础的知识开始学起!机器学习是一门融合概率论、线性代数、凸优化、计算机、神经科学等多方面的复杂技术。学好机器学习需要的理论知识很多,有些人可能基础不是特别扎实,就想着从最底层的知识开始学起,概率论、线性代数、机器学习凸优化公式推导,等等。
2025-06-05 14:03:29
702
原创 基于机器视觉的钢管表面缺陷检测方法
钢管表面缺陷检测是保障产品质量和安全的重要环节。针对人工检测效率低、精度差等问题,研究采用机器视觉技术实现自动化检测。重点分析了钢管弧形表面光照不均问题及其对成像的影响,提出基于线阵相机和LED光源的明场照明方案,并详细阐述了相机、镜头等关键硬件参数的设计方法。系统可检测凹坑、翘皮等四类典型缺陷,通过特征提取和算法识别实现动态实时检测,解决了传统方式漏检率高、适应性差等问题,为钢管智能制造提供了有效技术支持。
2025-06-03 17:25:14
679
原创 真心分享!纯新手怎么简单高效入门机器学习深度学习?
针对零基础学习机器学习深度学习的常见困惑,作者梳理出一套系统学习方案。该计划从Python编程、数学基础(统计学、线性代数、微积分)入手,推荐《白话机器学习》等入门教材;接着学习Numpy、Pandas等工具及PyTorch/TensorFlow框架,配合代码逐行解释网站辅助理解;实战环节包含Kaggle竞赛和经典教材《深度学习》。特别强调数学基础对算法理解的重要性,提供可视化工具Streamlit及计算机视觉等进阶资源。整套资料已打包,适合学生及转行人员系统学习。
2025-05-29 17:55:48
1248
原创 一文快速预览经典深度学习模型——CNN、RNN、LSTM、Transformer、ViT
本文系统介绍了深度学习中的核心神经网络模型及其应用。主要包括:1)CNN及其变体(LeNet、AlexNet等)的结构与计算细节;2)RNN和LSTM在处理序列数据时的机制与优化;3)Transformer的自注意力原理和多头注意力机制;4)ViT将Transformer应用于视觉任务的创新方法。重点分析了各模型的网络架构、关键技术(如残差连接、门控机制)和数学计算过程,并对比了不同模型的优缺点。这些模型通过特定的结构设计(如参数共享、多头并行)有效解决了梯度消失、长期依赖等难题,在计算机视觉和自然语言处理
2025-05-28 12:13:13
1267
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅