
深度学习
文章平均质量分 88
机器学习算法
在线分享人工智能学习干货
展开
-
基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
1. 可进行道路裂缝的检测与分割;2.可对每条裂缝进行分析,并且显示每条裂缝的最大与最小宽度及其位置,以像素点为单位;【注对于分叉的裂缝,宽度及位置数值可能不准确】3.支持图片、图片批量、视频及摄像头进行检测分割;4.可显示总分割面积占比以及单个目标的分割面积占比;5.界面可实时显示目标位置分割结果分割面积占比裂缝最大最小宽度及位置置信度用时等信息;6.结果保存:支持图片视频及摄像头的分割及分析结果保存;原创 2025-04-28 11:02:18 · 850 阅读 · 0 评论 -
使用PyTorch进行小样本学习的图像分类
少样本学习是机器学习的一个子领域。它涉及到在只有少数训练样本和监督数据的情况下对新数据进行分类。只需少量的训练样本,我们创建的模型就可以相当好地执行。考虑以下场景:在医疗领域,对于一些不常见的疾病,可能没有足够的x光图像用于训练。对于这样的场景,构建一个小样本学习分类器是完美的解决方案。小样本的变化一般来说,研究人员确定了四种类型:当我们谈论 FSL 时,我们通常指的是 N-way-K-Shot 分类。N 代表类别数,K 代表每个类中要训练的样本数。原创 2025-04-27 11:35:04 · 999 阅读 · 0 评论 -
一口气吃透机器学习十大核心算法!!
分类是根据已有的标签进行分类,是一项有监督学习任务。聚类是根据数据本身的特征进行分组,是一项无监督学习任务。原创 2025-04-26 14:59:09 · 658 阅读 · 0 评论 -
【2025年】最适合初学者的机器学习教程
人工智能(Artificial intelligence)是指使机器更接近人类大脑功能的技术。在本课中,您将探索不同类型的人工智能,包括生成式人工智能、机器学习和基于规则的人工智能。人工智能是一系列技术的总称。机器学习彻底改变了企业的运作方式和决策过程。对于像 Facebook、Google 和 Uber 这样的领先公司,机器学习是关键。在本小节中,你将深入了解机器学习模型和方法。要选择一个最能代表 AI 不同领域关系的图示,通常可以考虑以下的关系在机器学习中,模型是一个能够进行预测或决策的计算机程序。训练原创 2025-04-25 11:30:14 · 433 阅读 · 0 评论 -
YOLOv12 实时目标检测到底强在哪?
目标检测可以定位和分类图像或视频中的物体。首先,模型会分析输入,识别潜在物体的位置,并在它们周围绘制边界框。然后,该模型为每个检测到的物体分配一个标签,从而有效地对其进行分类。这个过程使机器能够“看到”并理解视觉信息,从而使它们能够执行自动驾驶、监控和图像检索等任务。原创 2025-04-24 11:37:35 · 905 阅读 · 0 评论 -
科研小白也能搞懂的机器学习!!!
在这个过程中,最陡峭的下坡路对应于梯度下降法中的梯度方向,而走的每一步对应于梯度下降法中的一次迭代。也可能涉及对数据进行预处理,如归一化、标准化、特征选择等,以提高数据的质量和模型的性能。主要用于神经网络的训练,它通过计算损失函数关于网络各层参数的梯度,从输出层反向传播到输入层,来更新参数。它能够对序列中的每个元素进行处理,并将当前的输出与之前的状态信息相结合,从而捕捉序列中的长期依赖关系。是一种常用的优化算法,通过计算损失函数关于模型参数的梯度,沿着梯度的反方向更新参数,以逐步减小损失函数的值。原创 2025-04-23 11:44:46 · 362 阅读 · 0 评论 -
新手必看!5分钟让你读懂深度学习!(附代码实现)
深度学习是机器学习的一个分支,主要使用多层神经网络进行数据处理。与传统机器学习方法相比,深度学习无需手动提取特征,可以直接从原始数据中学习。原创 2025-04-22 11:13:45 · 332 阅读 · 0 评论 -
2025PyTorch安装超详细指南
异常是指偏离预期的事件或项目。与标准事件的频率相比,异常事件的频率较低。产品中可能出现的异常通常是随机的,例如颜色或纹理的变化、划痕、错位、缺件或比例错误。异常检测使我们能够从生产流程中修复或消除那些处于不良状态的部件。因此,由于避免生产和销售有缺陷的产品,制造成本降低了。在工厂中,异常检测由于其特点而成为质量控制系统的一个有用工具,对机器学习工程师来说是一个巨大的挑战。不推荐使用监督学习,因为:在异常检测中需要内在特征,并且需要在完整数据集(训练/验证)中使用少量的异常。原创 2025-04-21 11:29:44 · 565 阅读 · 0 评论 -
小白也能懂得机器学习算法介绍
儿咱们聊聊为什么需要 Transformer,RNN 和 CNN 处理序列任务的局限性在哪里~首先聊聊RNN的问题,RNN(循环神经网络)在处理序列时,每一步的计算必须依赖上一时刻的输出,这就造成了处理长序列时计算缓慢,不能充分利用并行计算资源。当序列很长时,信息需要跨越很多时间步传递,而 RNN 的梯度在回传过程中容易消失(或偶尔爆炸),因此对于句子中很远的词之间的关系,模型往往难以捕获。原创 2025-04-19 10:40:55 · 621 阅读 · 0 评论 -
一口气搞懂!5大深度学习模型!RNN、CNN、Transformer、BERT、GPT
相较于RNN,CNN在处理图像数据方面更胜一筹,它能够自动学习图像中的局部特征,无需人工设计繁琐的特征提取器,从而实现了更高效、更精准的处理效果。这种设计赋予了RNN在处理具有时序关系的数据时得天独厚的优势,因此,在自然语言处理、语音识别等任务中,RNN均展现出了卓越的性能与广泛的应用前景。首先,在关键技术方面,这五种模型各具特色,它们通过不同的算法和结构来提取数据中的深层信息,实现了高效的特征学习和模式识别。GPT在自然语言处理领域获得了显著的突破和广泛的应用,成为众多NLP任务中的佼佼者。原创 2025-04-18 11:41:04 · 910 阅读 · 0 评论 -
【纯干货】图神经网络研究综述(GNN)
首先,估计节点和边的采样概率,然后在每个训练批次中进行子图采样,并构建完整的GON模型进行训练。表1列出了本文相关综述。针对大规模数据训练中存在的挑战,本节总结了不同粒度的采样算法(如表6所示),如节点级、层级和子图级采样算法。如图 3(d)所示,针对目标节点,VR-GCN仅采样两个节点,利用历史激活节点减小方差,显著减小估计梯度的偏置和方差。提出基于重要性的节点采样算法,如图 3(c)所示,利用随机游走策略评估节点重要性,对每个节点选择最重要的k个节点作为采样节点,并在聚合过程中进行重要性加权。原创 2025-04-17 11:11:29 · 1005 阅读 · 0 评论 -
详细介绍机器学习常见的10个学习类型
将10万张未标注的X光片输入初始模型进行预测,生成伪标签 (即模型预测的“正常”或“肿瘤”结果),仅保留模型预测置信度高的样本(例如预测概率>90%的5万张),作为“伪标注数据”加入训练集,其原理是假设模型对高置信度样本的预测基本正确,通过扩大数据量优化模型对肺部结构的理解。1000张已标注的X光片(如500张正常、500张肿瘤),用这些标注数据训练一个基础分类模型(如卷积神经网络),学习初步的肿瘤识别规律,例如肿瘤区域的纹理、边缘模糊度等特征。机器学习不是某种具体的算法,而是很多算法的统称。原创 2025-04-16 15:09:34 · 740 阅读 · 0 评论