- 博客(47)
- 收藏
- 关注
原创 PyTorch 第一神经网络基础,这教程对小白太友好了吧
用 PyTorch 创建一个简单的前馈神经网络。前馈神经网络使用了一层隐藏层,通过简单的线性变换和激活函数捕获数据的非线性模式。# 定义二分类的损失函数和优化器criterion = nn.BCELoss() # 二元交叉熵损失optimizer = optim.SGD(model.parameters(), lr=0.1) # 使用随机梯度下降优化器。
2025-05-22 15:12:26
759
原创 Pytorch从零入门到实战,公认最适合小白入门的学习路线!
PyTorch 提供了torch.nn模块,允许用户通过继承nn.Module类来定义神经网络模型。使用forward函数指定前向传播,自动反向传播(通过autograd)和梯度计算也由 PyTorch 内部处理。提供了常用的层(如线性层、卷积层、池化层等)。支持定义复杂的神经网络架构(包括多输入、多输出的网络)。兼容与优化器(如)一起使用。
2025-05-22 14:53:12
647
原创 Python 入门机器学习,零基础版的学习路线图,快速入门
Python 是机器学习中最常用的编程语言之一,因其易于学习、强大的库支持和社区生态系统。接下来,我将逐步说明如何通过 Python 入门机器学习,并介绍需要的一些常用库。
2025-05-22 11:47:21
1004
原创 神经网络的激活函数原来就是这样啊?!
同时,它的输出值也非常平滑,这对于某些任务,如图像分割和目标检测等需要输出非常平滑的场景来说是非常有用的。数值上溢是由于输入值过大而导致的,可能会返回不正确的概率,数值下溢是由于输入值过小而导致的,在计算机中会返回0。SoftPlus的输出非常接近于线性函数,但相对于线性函数,它的导数具有连续性和光滑性,可以通过求导得到,而ReLu函数的导数在输入为0处是未定义的。而激活函数的合理选择可以缓解这个问题,例如 ReLU 激活函数在正区间具有线性特征,可以使得梯度保持不变,从而有助于深层网络的训练。
2025-05-17 16:05:03
702
原创 杀死你的机器学习逻辑混乱!
全书共30个章节,每个章节都围绕一个核心问题展开,不管是如何减少过拟合、如何计算参数量、为什么VIT需要比卷积更大的训练集等常见疑惑,还是Transformer、自监督学习、生成式AI、大模型微调和评估等前沿技术的解答都通通包含。从基础知识、新兴技术、实际应用等多个方面解决你的困惑,从神经网络到计算机视觉和自然语言处理,再到模型的生产部署、预测性能和模型评估的内容都多维度涵盖。可以说这不仅是一本全面的机器学习和人工智能指南,更是帮大家培养逻辑思维和问题解决能力的神器!杀死你的机器学习逻辑混乱!
2025-05-17 15:56:49
173
原创 解锁新装备:快速理解神经网络、汇报画图必备
它以图像和动画的形式来解释深度学习是怎么一层层简化复杂事物的,我们可以设置数据分布类型、训练集和测试集的比例、批量大小、隐藏层、神经元个数、学习率、激活函数、正则化和任务类型等参数。——这绝对是深度学习初学者的福利,很多同学在学深度学习和神经网络的过程中,很容易被复杂的数学模型和公式劝退,但是这个网站不需要你懂任何复杂的数学运算就可以帮你掌握神经网络的概念。它展示了卷积神经网络(CNN)的所有实现,包括激活、池化、特征提取计算、输出预测和结果,帮助新手理解CNN到底是如何能聪明的识别人脸、听辨声音的。
2025-05-17 15:38:41
332
原创 吴恩达重新探讨机器学习核心算法:有些算法是经得起时间考验的!!
如果你刚开始学机器学习,希望这篇回答能为你揭开机器学习核心方法的神秘面纱。对于了解前沿技术的人来说,你会在熟悉的领域发现鲜为人知的观点。
2025-05-17 15:30:23
230
原创 这是目前我读过的把【AI+医疗】讲得最好的小册子!非常适合任何对这个领域感兴趣的人!
这是由世界上最大的科技出版社之一springer出版的,整本书不厚甚至可以说比较薄,只有201页,但每一页内容都是精华,还搭配了各种彩插图,不像那些大篇幅理论和公式的教材一样让人没有欲望看下去。所以这本书的内容,也是完全站在医学方向的学生、研究人员与专业医生的角度去撰写的,即使数学基础差点也没关系,只要在大学至少学过一门数学入门课程,比如生物统计学或者微积分,就能看懂。至于书的电子版,不是很好找,你需要的话可以添加下方小助手,她会无偿分享给大家,包括我之前收集整理的一些医学AI的优质论文可以一并分享给你。
2025-05-17 15:23:40
240
原创 神经网络可视图的大师级工具!手残党的福音!
它包含了整整100页不同的模板,可以按照自己的需求进行组合,无论是简单的线性回归、单层神经网络、多层感知机、还是复杂的resnet、RNN系列、transformer等等都可以画!PPT——一种超级常见的工具,使用门槛非常低,这么一整套深度学习组件全都是用PPT画的,可以直接拿来套用在自己的组会汇报ppt、论文稿或者其他的文章里。如果你需要这份深度学习PPT模板的话,可以添加下方小助手,无偿获取(记得把标题截图给小助手哦)!给大家整理了AI人工智能学习路线和相关的视频学习资料,需要可以找下面的助手领取。
2025-05-17 15:05:40
172
原创 学习深度学习是否要先学习机器学习?
不管你后面是不是真的想要从事机器学习或者深度学习这方面,我都希望你能有时间去学习的时候,多多的了解一下 AI 技术 ,还是那句话,时间紧的情况下,怎么快速的为目标服务是最重要的,先学对自己有用自己需要的内容。就比如我给计算机一些动物的图片,然后告诉计算机哪个是老虎,哪个是狮子,计算机根据我给出的“图片和答案的特征”去学习“老虎为什么是老虎,狮子为什么是狮子”。这三部分看着挺唬人,其实只需要学习需要的内容,如果你的时间稍微宽裕一点,可以花一个半月左右的时间,如果时间紧,那就压在一个月以内一鼓作气的搞定。
2025-05-17 14:41:26
1906
原创 机器学习,深度学习,神经网络,深度神经网络之间有何区别?
某种意义上也可以理解为一定的有监督,但其又不是完全将奖励值作为学习目标,并且一般是实时的,基于概率去抽样下一步行为的,所以又有着一定的区别。因为只需要一部分有标签的数据,所以只需要人工标注一些数据即可,又不像无监督一样,毫无答案可言,所以基于人力资源和效果上的综合考虑,现在半监督学习也是一个比较受关注的方向。可以看到在 d、e层就已经超越了人类的理解范畴,更别说到了后面层的特征图。除了以上两点,深度神经网络还有许多其他的优势,但是限于篇幅,这里就不再展开讨论,有兴趣的小伙伴们可以查阅更多的资料。
2025-05-17 14:03:15
1438
2
原创 要学深度学习,最重要的是先对其建立一个系统宏观的架构!
对于学习和研究深度学习的小伙伴而言,及早建立一个系统宏观的深度学习架构是非常重要的!因为这对你快速确定研究方向、针对性的补充知识以及寻找论文idea都非常非常有帮助。
2025-05-17 13:51:59
130
原创 来啦!我详细整理了机器学习十大核心算法模型的原理、公式和代码示例!
然后,我们使用训练好的模型在测试集上进行预测,并计算了预测值与实际值之间的均方误差(Mean Squared Error,MSE)。我整理了一些AI高质量书籍,涉及数学、机器学习、深度学习、代码实战、项目能力等方面,如果你需要的话可以长按下方二维码添加小助手,她会无偿分享给你~同时,我也整理了涉及数学、机器学习、深度学习、代码实战、项目能力等方面的资料,如果你需要的话可以长按下方二维码添加小助手,她会无偿分享给你~后,我们创建了一个逻辑回归模型,并用我们的数据集来训练它。之后,我们用训练好的模型来预。
2025-05-16 17:39:10
133
原创 要结合机器学习/深度学习做科研,从入门到写论文最快需要多久啊??
这是我在知乎上看到的一个问题,应该是说出了许多需要用机器学习深度学习来做课题研究生的心声,为了发论文和毕业可真是太难了!
2025-05-16 17:10:33
469
原创 为什么大厂都看重Kaggle竞赛?一文带你准备Kaggle!
打开各大厂算法岗招聘页面,“” 的要求屡见不鲜。在科技行业,Kaggle 竞赛成绩已成为数据科学家和 AI 工程师求职时的 “硬通货”。谷歌、微软、Meta 等大厂在招聘数据相关岗位时,常将 Kaggle 排名、Kernel 质量、竞赛成果作为核心筛选标准。
2025-05-16 16:53:29
1013
原创 都说调参是玄学?但它其实可以很科学!!!
打个比方:就像做饭的时候调整盐、糖的比例,调参是为了让模型表现得更好,调节不同的参数以适应特定任务。在学习深度学习的时候,调参是一个非常重要的环节,但调参能力是需要日积月累提升的,这就需要我们对为什么调参、怎么进行调参、怎么让调参结果最优化进行具体的学习等问题有一个完整且科学的优化模型流程,这才是我们进行调参的最终目的。比如在选择优化器时,由于所有类型的机器学习问题和模型架构中都不存在最好的那一个,那么我们就坚持选择时下最流行、最成熟的那一个(尤其对于新项目来说)。• 最好的学习率衰减方案是什么?
2025-05-16 16:38:35
228
原创 揭秘!留学申请加分秘籍:论文才是“敲门砖”
尤其是申请研究生以及更高的博士层次项目时,在某一领域中申请人对其专业知识的掌握度、研究方法的运用、对问题的独到见解,都体现着申请人的研究、分析、撰写等能力,这也是海外名校招生官更关注的地方。科研论文的成果和成绩,以及在这个过程中的体验和感悟。论文之所以能在留学申请中扮演至关重要的角色,无非是在某一领域极具深刻且创新性的探索能力,这不仅是学术能力的展示,更是持之以恒的探索精神。从美国硕博申请的基础要求可见,除了硬实力以外,高质量的论文发表和有深度的科研经历的软背景也是成功申请的重要组成因素。
2025-05-16 12:03:31
487
原创 毕设党福音!OpenCV 实战:掌握视觉处理技巧
在当下,AI 大模型的热潮可谓席卷全球,从能与我们流畅对话、撰写文案的语言模型,到能根据只言片语创作出精美画作的图像生成模型,它们不断刷新着大众对人工智能的认知,也切实改变着众多行业的运作模式。事实并非如此,计算机视觉技术正凭借自身的独特优势不断创新,展现出强大的生命力与发展潜力。今天我将以下几个方面来带领大家快速了解计算机视觉这个领域。目录一、计算机视觉:开启智能视觉大门二、核心概念:搭建视觉认知基石三、传统技术:早期探索的智慧结晶四、应用变迁:不同时期的亮眼表现。
2025-05-16 11:56:51
646
原创 为何Transformer独领风骚?一文解析大模型时代的幕后英雄!
当GPT以流畅丝滑的对话交互惊艳大众时,人们的目光被其吸引。而在这背后,Transformer架构无疑是支撑起这场语言革命的关键力量。想要深入理解如今火爆的大语言模型,就必须揭开Transformer的神秘面纱。为了更好助力大家进入这场语言革命的大门,在这里强力向大家推荐这本书,里面讲详细讲解了“为什么要这样做”以及“怎么亲手实现”。这本书配套的代码全部开源(GitHub 40.6k Star),下方链接可直达,。扫码加助理即可领取完整资料。
2025-05-16 11:45:12
874
原创 永不过时!如果你想深入理解深度学习和神经网络的底层逻辑和方法,那这本教程一定是不二之选!
这本书的作者Tariq Rashid拥有物理学学位、机器学习和数据挖掘硕士学位,并且领导伦敦Python meet up小组进3000名成员,甚至还为英国政府领导开源改革!这本书的实操性也非常的强,跟着一步一步操作,你可以全程用python编码并且制作自己的神经网络,教它识别人类的手写数字并且像专业开发的神经网络那样运行。在这个过程中充分理解神经网络的内部机制和原理,并构建神经网络层级结构、权重矩阵等核心组件。书籍的第一部分思维篇,通过大量插图和例子讲述了神经网络底层的数学知识;,并让其在树莓派上工作。
2025-05-15 22:28:18
180
原创 机器学习十五大算法总结!包括核心思想、公式、代码示例包含!!(附资料)
本文总结了机器学习的十五大核心算法模型,每种算法模型的核心原理、公式和代码我都给大家列出来了,可以作为复习和对整个算法框架的补充!需要的找小助手无偿领取即可。
2025-05-14 17:37:17
136
原创 王炸!世界上第一本全面讲解Transformer项目实战的书籍!!
使用Transformers从头开始训练BERT。使用Transformers进行命名实体识别。使用Transformer对文本分类进行微调。使用Transformers进行机器翻译。使用Transformer进行语音识别。使用Transformer执行文本摘要。使用Transformers改写文本。使用Transformers生成文本。Python中的假新闻检测。使用VADER进行情感分析。使用Python翻译语言。可对话的AI聊天机器人。
2025-05-14 17:20:31
206
原创 看完才知道,为什么李沐、李航这些大神会强烈推荐这本强化学习书籍!!
强化学习现在是AI领域的重要分支,已经广泛应用于游戏、自动驾驶、机器人控制、资源优化、金融交易等众多领域,不断推动着智能系统在复杂环境中的决策与学习能力向更高层次发展。对初学者而言,强化学习有较高的学习门槛,容易望而却步。但它给出了各个算法的可执行代码,帮大家快速上手尝试,拉近了讲授内容与读者的距离,是入门强化学习的必备参考教材。第二部分为强化学习进阶,讨论深度强化学习的思维方式、深度价值函数和深度策略学习方法;书籍第一部分为强化学习基础,讲解强化学习的基础概念和表格型强化学习方法;
2025-05-14 17:10:10
159
原创 真不愧是麻省理工出版的“深度学习启蒙圣经”!!!
于是他从深度学习的基本概念开始讲解,梳理了深度学习的三大技术演进阶段:基础架构层(自动编码器与循环神经网络)、时序建模层(长短期记忆网络优化方案),以及创新范式层(生成式对抗网络、胶囊网络等新型架构),完整呈现了从特征提取到创造性生成的算法进化路径。这本书的作者也不是什么无名之辈,John D. Kelleher在AI领域深耕多年,对计算机视觉、自然语言处理这些方向都有极深的研究,这本书也是他多年科研经验的具象体现。这本麻省理工学院出版社精心出版《深度学习》真不愧是被许多人眼中的“深度学习启蒙圣经”
2025-05-14 17:02:07
108
原创 学个锤子!这本跨专业/转行学机器学习的最佳教程你一定不能错过!!!
却被机器学习各种难懂的教程拦在门外?如果你有这种烦恼,那我推荐你可以花时间看看这本从零教学机器学习的“在这本书里,作者会直接带你向实战发起猛攻,用一行行代码构建算法模型,让你在这个过程中吃透所用的方法与技巧书中每一行python代码也都有解读注释,即使你不了解python,也可以在学习中很快的掌握它并且作者还用了大量的可视化图表来帮助你理解当中的概念、方法和实用技巧,让大家不会局限在理论层面,更多的是掌握和提升实战能力。整个锤子书共分为第一部分。
2025-05-14 16:56:14
157
原创 依旧是25年最拔尖的PyTorch实用教程!堪比付费级内容,真心建议大家人手一份啊!
我真的想知道作者到底咋把PyTorch教程整得这么牛的啊?明明在内容上已经足以成为付费教材了,但作者偏要免费开源给大家学习!而且就连Datawhale这个国内著名的开源组织都专程写文章给大家安利,从安装环境开始,一直到模型应用都是手把手教,不管是老手还是初学者都非常非常适用!
2025-05-14 16:38:03
164
原创 太权威了!一口气带你看完深度学习领域引用量最高的10篇论文!!
核心突破包括:1、多阶段训练框架,通过监督学习策略网络(SL Policy Network)模拟人类专家棋谱(准确率57%),再结合强化学习策略网络(RL Policy Network)优化自博弈胜率(提升80%以上,最终训练价值网络(Value Network)预测棋局胜负概率;其核心创新包括:1、对抗训练框架,通过生成器(Generator)与判别器(Discriminator)的动态博弈,实现数据分布的逼近,数学上以极小极大博弈公式(minGmaxDV(D,G))定义训练目标;
2025-05-14 16:30:06
736
原创 用AI写代码,怎么问问题啊!?
一位高级工程师描述,他有次带人用AI优化SpringBoot接口,实习生兴奋地说:“大模型生成CRUD这样的基础内容太强了!根本就不用人来干预。”但我注意到生成的代码缺少事务管理,问他为什么不用@Transactional注解,实习生居然反问:"那个注解是干什么的?是的,现在哪怕基础不牢,也能完成一定规模的开发任务,但是这所带来的最大的问题就是越来越多的开发者遇到问题不知道具体该问什么,只能大段大段的复制代码,寄希望于自己写出的bug就在这一堆代码里面。所以与其回避AI的错误,不如花费时间在优化和提升上。
2025-05-13 17:09:04
860
原创 面试官必问:一文读懂AlexNet、VGG、GoogleNet、ResNet到底是什么?
VGG(Visual Geometry Group)是由牛津大学视觉几何组提出的深度卷积神经网络,它在 2014 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中取得了优异的成绩。VGG 的主要贡献在于证明了增加网络的深度可以显著提高模型的性能,其网络结构简单且规整,具有很强的可扩展性。GoogleNet(也称为 Inception 网络)是由 Google 团队在 2014 年提出的深度卷积神经网络,它在 ImageNet 挑战赛中夺冠。
2025-05-13 16:54:19
675
原创 超详细!YOLO11模型架构详解、性能对比
延续 YOLO(You Only Look Once)系列的强大传统,这一新版本旨在提高实时对象检测和图片分割能力,实现前所未有的效率和性能水平。,要想成为优秀的CV工程师,YOLO是你必须要掌握的技能。YOLO一直是应用很广的主流算法之一,也是月薪30K以上的工程师标配技能,更是技术和求职风向标。优秀的计算机视觉工程师,目标检测的学习避免不了,而目标检测的核心就是YOLO。水平打造,课程整体以项目为驱动,总200+案例实战,以及各领域10个大型企业级项目。,每秒可处理45帧,也能够理解一般的对象表示。
2025-05-13 16:15:06
455
原创 特征提取:传统算法 vs 深度学习
其速度是SIFT的100倍,是SURF的10倍。对圆周上的像素点进行灰度值比较,找出灰度值超过 l(P)+h 和低于 l(P)-h 的像素,其中l(P)是P点的灰度, h是给定的阈值;为了加快特征点的提取,首先检测1、9、5、13位置上的灰度值,如果P是特征点,那么这四个位置上有3个或3个以上的像素满足条件。尽管这些特征在光照变化剧烈,旋转幅度大等情况下还存在鲁棒性问题,但仍然是目前应用最多、最成熟的方法,比如ORB-SLAM使用的ORB特征、VINS-Mono使用的FAST特征等都是传统的特征点。
2025-05-13 15:39:58
536
原创 毕业设计神器!YOLOv8实战指南带你轻松搞定目标检测
YOLO系列属于单阶段目标检测算法,它不像有些算法那样分两步来检测目标(先找出可能存在目标的区域,再对这些区域进行分类和定位),而是直接在一个步骤中完成目标的分类和定位,速度更快。:传统的目标检测算法可能会使用一些预先定义好的框(Anchor)来辅助检测目标,而YOLOv8采用了Anchor - free机制,不需要这些预先定义的框,简化了检测过程。教师模型选择策略很重要,合适的教师模型可以让学生模型更快地学习到有用的知识,同时减少模型的大小和计算量。:是分类损失,用于衡量模型对目标类别预测的准确性。
2025-05-13 14:19:18
964
原创 使用Pytorch从零实现Transformer模型
在深度学习的广阔宇宙中,Transformer 架构无疑是一颗耀眼的明星。它凭借其强大的并行计算能力和出色的序列建模能力,在自然语言处理、计算机视觉等众多领域取得了卓越的成就。今天,我们将一起探索如何使用 PyTorch 来实现 Transformer 架构,为你的深度学习之旅增添新的动力!文章末尾有给大家整理好资料+AI人工智能学习路线图,自取即可!!!
2025-05-13 13:03:22
752
原创 研究生阶段如何自学计算机视觉?
这六个阶段基本就是当年我的经历,你在未来三年内会过的很累但是充实而快乐。另外,千万不要忘记锻炼身体,好的身体是革命的本钱!
2025-04-28 16:47:29
1169
原创 在CV界,传统卷积已经彻底输给Transformer了吗?
比如说 Vision Transformer(ViT),把图像切成一个个小块,当成序列来处理,在大规模数据集上训练后,性能直接起飞,在一些图像任务上,把传统 CNN 都给比下去了。就好比处理一张复杂场景的图片,CNN 可能得一层一层慢慢堆叠卷积层,才能大概掌握全局信息,可 ViT 用自注意力机制,一下子就能把整个图像的信息都关联起来分析,效率和效果都杠杠的。它通过多个卷积层和池化层,能把图像里的局部特征,像纹理、边缘这些,提取得明明白白,而且计算量相对可控,在资源有限的情况下也能跑得欢。
2025-04-27 17:30:03
366
原创 深度学习科研论文产出的完整过程
撰写深度学习科研论文是一个漫长而艰辛的过程,但每一步都充满挑战与机遇。坚持理论基础与实践结合,注重实验设计与数据分析,不断优化模型结构,最终产出的论文将是你科研道路上的宝贵财富。
2025-04-25 18:06:19
439
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人