医学CT图像三维重建技术研究进展与关键技术综述
摘要
本综述系统梳理医学CT图像三维重建技术发展现状,以王瑜《面向断层医学图像的三维重建与关键技术研究》、徐艳蕾《基于顺序形态学理论的医学CT图像三维重建方法的研究》为核心参考文献,阐述图像预处理、边缘检测、图像分割、曲面重建等关键技术及具体做法,分析现有研究成果与不足,展望未来发展方向,为该领域研究与实践提供参考。
一、引言
医学CT图像三维重建技术是医学影像领域的核心技术之一,能够将二维断层图像转化为直观的三维模型,为疾病诊断、手术规划、医学教学等提供重要支持。近年来,随着计算机技术与图像处理算法的发展,该技术取得显著进展。王瑜、徐艳蕾等学者的研究分别从不同理论与技术路径切入,对推动三维重建技术发展具有重要意义 。
二、研究背景与意义
(一)研究背景
医学成像技术的进步使得CT图像获取更加便捷高效,但二维图像难以全面展示人体复杂解剖结构与病变形态。三维重建技术成为突破这一局限的关键,通过对断层图像的处理与重构,实现人体组织与病变的三维可视化,满足临床与科研需求。
(二)研究意义
在临床应用中,三维重建模型帮助医生更精准地判断病变位置、形态与周围组织关系,提升诊断准确性;在手术规划方面,可模拟手术过程,评估风险,制定个性化手术方案;在医学教育领域,为学生提供直观的解剖结构模型,辅助理解人体复杂结构。
三、国内外研究现状
(一)国外研究现状
国外在医学图像三维重建领域起步较早,技术处于领先地位。在算法研究上,深度学习算法如卷积神经网络(CNN)、生成对抗网络(GAN)被广泛应用于图像分割与三维重建,显著提高重建精度与效率;在硬件设备研发方面,不断推出高分辨率、低辐射的CT设备,为高质量图像采集提供保障。
(二)国内研究现状
国内相关研究发展迅速,众多科研团队在算法创新与临床应用方面取得成果。学者们结合数学理论与计算机技术,探索新的重建算法,如基于数学形态学、机器学习的方法。同时,产学研合作不断加强,推动三维重建技术在临床中的广泛应用。
四、关键技术研究
(一)图像预处理
1. 降噪处理
- 徐艳蕾提出基于多尺度多结构顺序形态变换的平滑滤波算法。具体做法是:根据图像特征设计多种不同尺度和形状的结构元素,如方形、圆形、菱形等;对医学CT图像依次进行不同尺度和结构元素的顺序形态变换操作,通过腐蚀、膨胀等运算抑制噪声,同时利用多尺度特性保留不同大小的图像细节和边缘信息,最终增强恢复图像的对比度 。
- 王瑜采用中值滤波与小波变换结合的方式。先利用中值滤波,将图像中每个像素点的灰度值用其邻域内像素灰度值的中值替换,有效去除椒盐噪声,且能较好地保留图像边缘;再运用小波变换,将图像分解到不同频率子带,对高频子带系数进行阈值处理抑制高斯噪声,低频子带保留图像主要结构信息,从而实现图像降噪优化。
2. 增强处理
- 徐艳蕾基于顺序形态学理论,通过形态学开 - 闭运算或闭 - 开运算增强图像对比度。以开 - 闭运算为例,先进行开运算去除图像中的小凸起噪声,再进行闭运算填充小凹陷,调整图像灰度分布,增强图像对比度。
- 王瑜利用灰度均衡算法,计算图像灰度直方图,获取各灰度级像素数量分布;依据灰度均衡公式,将原灰度值映射到新的灰度范围,使图像灰度分布更加均匀,拓展灰度分布范围,从而提升图像整体对比度。
(二)边缘检测
1. 传统方法局限:传统边缘检测算子(如Canny、Sobel算子)对医学CT图像中的噪声敏感,易产生伪边缘或漏检关键边缘信息,难以满足三维重建对精确边缘提取的要求。
2. 新方法实践
- 徐艳蕾构建多尺度多结构元素边缘检测算子。首先,设计多种不同尺度和形状的结构元素,如小尺度的方形结构元素用于捕捉细节边缘,大尺度的圆形结构元素用于检测整体轮廓边缘;然后,将这些结构元素与图像进行顺序形态学运算,计算不同结构元素作用下的边缘响应;最后,融合多尺度多结构元素的边缘响应结果,得到准确清晰的边缘。针对大尺寸图像运算效率问题,通过优化结构元素运算顺序,采用并行计算等方式,提出快速边缘检测算法 。
- 王瑜提出迭代改进Canny边缘检测算法。在传统Canny边缘检测流程基础上,对非极大值抑制和双阈值处理步骤进行迭代优化。每次迭代根据图像局部特征动态调整阈值参数,重新进行边缘检测和细化,多次迭代直至边缘检测结果达到最优,有效提高医学CT图像边缘检测的准确性。
(三)图像分割
1. 区域增长算法改进
- 徐艳蕾基于顺序形态梯度改进区域增长分割算法。先计算图像的顺序形态梯度,突出图像局部灰度变化;然后,根据形态梯度信息选取合适的种子点,以种子点为中心,按照一定的相似性准则(如灰度差值小于设定阈值)向周围扩展区域,逐步分割出感兴趣区域,提高分割准确性和自动化程度。
- 王瑜未重点阐述区域增长算法改进,但在整体图像分割思路中,也强调通过准确提取边缘轮廓来辅助分割感兴趣区域,为后续三维重建提供精确边界。
2. 分水岭算法优化
- 徐艳蕾提出基于顺序形态梯度重构的分水岭分割算法。首先,利用顺序形态梯度对图像进行预处理,增强区域边界;然后,通过形态学重构操作平滑局部噪声干扰,调整区域边界信息;最后,进行传统分水岭分割,有效抑制过分割问题,实现更准确的图像区域划分 。
(四)曲面重建
1. B样条曲线曲面重建(王瑜):以B样条曲线曲面为理论基础,首先依据曲率特征提取各层轮廓的特征点,在曲率变化大的区域密集选取特征点,以捕捉轮廓细节;接着对特征点进行重采样,使每行(列)获得统一的采样点数;再对采样点进行非均匀双三次B样条插值,生成初始曲面;最后,在一定控制精度下,基于距离特征对曲面进行节点插入,通过最小二乘逼近法计算新的控制顶点,优化曲面形状,得到误差在容许范围内的逼近曲面。根据断层轮廓封闭或非封闭特性,综合运用周期B样条和非周期B样条,分别处理边界连续性问题 。此外,还研究了重建表面模型向CAD实体模型的转换过程,确保模型在不同软件中的兼容性和可操作性。
2. 其他方法探索(徐艳蕾):虽未详细阐述曲面重建具体方法,但在三维重建整体流程中,通过优化图像分割和三维插值结果,为曲面重建提供高质量数据基础。基于分割结果,结合合适的表面绘制算法(如移动立方体算法MC),实现医学CT图像的三维曲面重建 。
(五)轮廓匹配与分支问题处理(王瑜)
1. 轮廓匹配:通过建立轮廓树结构,明确各轮廓的内外属性及嵌套关系,缩小轮廓匹配搜索范围。在相邻切片上,以当前轮廓为中心,根据设定的阈值半径搜索对应轮廓,通过计算轮廓间的几何相似性、距离等度量指标,确定轮廓间对应关系,有效解决多轮廓曲面重建时的匹配难题 。
2. 分支问题处理:采用加权补分法处理分支问题。首先对母轮廓进行分割,根据分支处的形态和权重分配子轮廓;然后插入中间层辅助过渡,调整曲面拓扑结构,确保分支处曲面平滑过渡,实现含有分支结构(如血管、支气管等)的复杂曲面重构 。
五、文献评述
王瑜与徐艳蕾的研究分别从不同技术路径深入探索医学CT图像三维重建关键技术。徐艳蕾基于顺序形态学理论,在图像预处理、边缘检测、图像分割等环节提出创新性算法,有效解决医学CT图像噪声、边缘提取和分割难题;王瑜则围绕图像预处理、边缘轮廓提取、曲面重建及轮廓匹配和分支问题处理,构建了完整的三维重建技术链条,提高重建精度与效率 。
然而,现有研究仍存在不足。部分算法计算复杂度高,难以满足临床实时处理需求;在复杂病变或组织结构重叠情况下,重建模型的准确性和可靠性有待提升;不同算法间缺乏统一评估标准,限制技术对比与优化。
六、未来展望
未来研究可聚焦于结合深度学习与传统算法,降低计算复杂度;加强多模态医学图像融合技术研究,提升复杂场景下重建准确性;建立统一的算法评估与性能测试标准,推动医学CT图像三维重建技术的标准化与临床广泛应用。