2025 年 6 月 4 日消息,为帮助开发者解决 AI 模型与外部数据源连接的难题,Anthropic 与 DeepLearning.AI 合作推出免费课程 ——“MCP: 使用模型上下文协议构建富上下文 AI 应用”,聚焦于教授开发者掌握 Model Context Protocol(MCP),通过标准化协议简化 AI 应用与外部工具和数据的连接。
课程背景:MCP 协议的创新价值
Anthropic 于 2024 年 11 月开源的 MCP(Model Context Protocol)是一项重要创新,它是一种通用协议,旨在标准化大型语言模型(LLM)与外部数据源、工具和提示模板的交互方式。MCP 采用客户端 - 服务器架构,通过 MCP 客户端(嵌入 AI 应用)和 MCP 服务器(提供工具、数据和提示)实现无缝通信。这一设计不仅提升了 AI 应用的上下文处理能力,还显著降低了开发复杂集成的门槛。
此次由 Anthropic 与 DeepLearning.AI 联合打造的免费课程,由 Anthropic 技术教育负责人 Elie Schoppik 担任导师。课程自 5 月 14 日上线以来,凭借其理论讲解与实践项目相结合的模式,受到开发者和 AI 爱好者的广泛关注,被视为加速 AI 应用开发的重要资源。
课程亮点:理论与实践结合的全面指导
课程内容丰富,涵盖 MCP 的核心概念、架构以及实际应用,为学员提供了清晰的学习路径:
- 构建智能应用:学习构建 MCP 兼容的聊天机器人,并连接到 MCP 服务器获取工具、数据和提示模板。
- 服务器开发部署:掌握开发和部署 MCP 服务器的技能,使其支持文件系统操作、网页内容提取等功能。
- 应用集成:学会将 AI 应用(如 Claude Desktop)与 Anthropic 提供的参考服务器或第三方服务器集成。
- 探索未来发展:了解 MCP 在多代理架构和服务器注册 API 等方面的未来发展方向。
适用人群与学习支持
该课程适合具备 Python 基础和 LLM 提示工程基本知识的开发者,无论是 AI/ML 工程师、初创公司开发者,还是希望为职业生涯增添亮点的技术从业者,都能从中获益。课程完全免费,目前在 DeepLearning.AI 学习平台测试阶段提供,吸引了全球开发者参与。
作为开源协议,MCP 得到 Anthropic 及开源社区的共同支持。课程中介绍的参考服务器(如文件系统和网页提取服务器)以及第三方集成(如 Google Drive、Slack、GitHub),为开发者提供了丰富的实践资源。Anthropic 还计划推出更多工具包,支持企业级 MCP 服务器的部署,进一步扩展其生态系统。
行业影响:推动 AI 开发标准化与效率提升
MCP 的推出有效解决了 AI 应用开发中的碎片化问题。传统上,连接不同数据源需要为每个场景编写定制代码,而 MCP 通过统一协议极大地简化了这一过程。课程的发布更是进一步降低了学习门槛,让开发者能够快速掌握这一技术,构建更智能、更具上下文感知能力的 AI 应用。