一、获取途径
-
开源平台下载
- Hugging Face:模型已开源至 Hugging Face 平台,支持直接下载完整模型权重及配置文件。
- PPIO 派欧云:提供一站式 AIGC 云服务,平台已上线
DeepSeek-Prover-V2-671B
模型,支持在线部署与调用。
-
算力适配版本选择
- 提供双版本适配:
- 7B 参数模型:适合本地部署或低算力场景,支持 Lean 4 子目标验证。
- 671B 稀疏 MoE 模型:需昇腾 910B/H800 等高性能芯片支持,适用于复杂定理推理任务。
- 提供双版本适配:
二、部署与配置
-
环境要求
- 硬件配置:
- 671B 版本需至少 8 卡昇腾 910B 或 NVIDIA H800 集群,显存建议 ≥640GB36。
- 7B 版本可在单卡 A100/A800 环境下运行。
- 软件依赖:
- 需预装 Lean 4 定理证明环境及 Python 3.10+、PyTorch 2.3+ 框架。
- 硬件配置:
-
快速部署流程
# 从 Hugging Face 克隆仓库 git clone https://huggingface.co/deepseek/DeepSeek-Prover-V2-671B # 安装依赖(需启用 FP8 量化支持) pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 # 加载模型示例代码 from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("deepseek/DeepSeek-Prover-V2-671B", trust_remote_code=True)
三、核心使用场景
-
定理证明模式
- 递归分解:输入非形式化数学命题,模型自动生成 Lean 4 代码,分解为子目标并逐步验证。
- 交互式调试:支持在 Jupyter Notebook 中实时修正证明步骤,模型提供错误定位与修复建议。
-
API 调用集成
- 通过 PPIO 平台 API 接口批量处理任务(需申请开发者密钥):
import ppio_api client = ppio_api.Client(api_key="YOUR_KEY") response = client.prove_theorem("∀n∈ℕ, n² ≥ n") print(response.lean4_code) # 输出形式化证明代码
四、注意事项
-
算力成本控制
- 671B 模型推理时启用动态专家选择(Dynamic Expert Selection),可通过调整
max_active_experts
参数降低显存占用。 - PPIO 平台提供按需付费服务,每小时费用约为 48 元(使用昇腾 910B 算力)。
- 671B 模型推理时启用动态专家选择(Dynamic Expert Selection),可通过调整
-
学术用途建议
- 建议结合官方提供的冷启动数据集(含 200B tokens 推理数据)进行微调,以适配特定数学领域任务14。
- 7B 模型在有限基数证明等任务中表现优于大模型,可优先尝试。
-
- 通过 PPIO 平台 API 接口批量处理任务(需申请开发者密钥):