树在数据结构与算法中的AVL树应用

树在数据结构与算法中的AVL树应用

关键词:数据结构、树、AVL树、平衡二叉树、算法应用

摘要:本文主要探讨了树这种数据结构在算法中的重要应用,着重介绍了AVL树。我们会先了解AVL树的基本概念和原理,再深入分析其核心算法,通过具体的代码案例来展示如何实现AVL树,还会探讨AVL树在实际场景中的应用,最后展望AVL树的未来发展趋势与挑战。通过阅读本文,读者将对AVL树有一个全面而深入的理解。

背景介绍

目的和范围

在计算机的世界里,数据就像宝藏一样,我们需要把它们好好地存放和管理,这样才能快速地找到我们想要的东西。树这种数据结构就像是一个聪明的仓库管理员,能帮助我们高效地存储和查找数据。而AVL树是树家族中的一个特殊成员,它有着独特的平衡特性,能让数据的查找、插入和删除操作都变得非常快。我们这篇文章的目的就是要详细地介绍AVL树,从它的基本概念到具体的实现,再到实际的应用,让大家对AVL树有一个全面的认识。

预期读者

这篇文章适合那些对计算机编程和数据结构感兴趣的小伙伴,不管你是刚开始学习编程的小学生,还是已经有一定编程基础的中学生,甚至是想要深入了解数据结构的大学生和程序员,都能从这篇文章中有所收获。

文档结构概述

我们会先介绍一些和AVL树相关的基本术语,让大家对这些概念有一个初步的了解。然后通过一个有趣的故事引出AVL树这个主题,再用通俗易懂的语言解释AVL树的核心概念,以及这些概念之间的关系。接着,我们会详细讲解AVL树的核心算法原理和具体的操作步骤,还会用数学模型和公式来帮助大家更好地理解。之后,我们会通过一个实际的项目案例,展示如何在代码中实现AVL树。最后,我们会探讨AVL树在实际场景中的应用,推荐一些学习AVL树的工具和资源,展望AVL树的未来发展趋势与挑战,并且进行总结和提出一些思考题。

术语表

核心术语定义
  • :树是一种非线性的数据结构,它就像一棵真正的树一样,有一个根节点,从根节点出发可以长出很多树枝(子节点),每个树枝又可以长出更小的树枝(子节点的子节点),以此类推。树的结构可以用来表示很多现实世界中的关系,比如家族的族谱、公司的组织结构等。
  • 二叉树:二叉树是树的一种特殊类型,它的每个节点最多只能有两个子节点,就像一个人最多只能有两个孩子一样。这两个子节点分别被称为左子节点和右子节点。
  • 平衡二叉树:平衡二叉树也是二叉树的一种,它的特点是每个节点的左子树和右子树的高度差不超过1。就像一个人走路的时候,两只脚的长度差不能太大,否则就会摔倒。平衡二叉树的这种特性可以保证树的高度不会太高,从而让数据的查找、插入和删除操作都能在比较短的时间内完成。
  • AVL树:AVL树是一种自平衡的二叉搜索树,它是以两位苏联数学家Adelson-Velsky和Landis的名字命名的。AVL树在插入和删除节点的时候,会自动调整树的结构,使得树始终保持平衡,从而保证了数据操作的高效性。
相关概念解释
  • 节点:节点是树中的一个元素,就像树的树枝上的一片叶子一样。每个节点可以包含一些数据,还可以有指向其他节点的指针。
  • 根节点:根节点是树的最顶层节点,它没有父节点,就像树的树干一样,是整个树的基础。
  • 子节点:子节点是一个节点的下一层节点,就像树的树枝上长出的小树枝一样。一个节点可以有多个子节点。
  • 高度:树的高度是指从根节点到最远叶子节点的最长路径上的节点数。就像树的高度是从树干的底部到最高的树枝的长度一样。
缩略词列表
  • AVL:Adelson-Velsky and Landis,即AVL树的发明者。

核心概念与联系

故事引入

从前,有一个小镇,小镇上有一个图书馆。图书馆里有很多很多的书,为了方便读者查找书籍,图书管理员决定把这些书按照一定的规则摆放。他先找了一个大书架作为根书架,然后把所有的书分成两类,一类放在根书架的左边,一类放在根书架的右边。接着,对于左边和右边的书,他又分别再进行分类,继续放在下一层的书架上,以此类推。这样,就形成了一个像树一样的结构,每个书架就是树的一个节点。

一开始,这个图书馆的图书摆放得很整齐,读者可以很快地找到自己想要的书。但是,随着时间的推移,不断有新的书被加入到图书馆,也有一些书被借走不再归还。这样一来,书架上的书就变得越来越不均衡了,有些书架上的书很多,有些书架上的书很少。这就导致读者查找书籍的速度变得越来越慢了。

为了解决这个问题,图书管理员想到了一个办法。他每次在添加或者移除书籍的时候,都会检查书架的平衡情况。如果发现某个书架的左边和右边的书数量相差太大,他就会重新调整这些书的摆放位置,让书架重新变得平衡。这样,读者又可以很快地找到自己想要的书了。

这个图书馆的书架结构就像我们在计算机中使用的AVL树,图书管理员的调整方法就是AVL树的平衡调整算法。

核心概念解释(像给小学生讲故事一样)

核心概念一:什么是二叉树?

二叉树就像一个有规则的家族树。想象一下,有一个家族,每个家族成员最多只能有两个孩子,一个是大儿子,一个是小儿子。这个家族的第一代只有一个人,他就是家族的祖先,就像二叉树的根节点。然后,这个祖先有了两个孩子,这两个孩子就成为了第二代成员,他们分别是祖先的左子节点和右子节点。接着,第二代的每个成员又可以有自己的两个孩子,形成第三代,以此类推。这样,整个家族就形成了一个像树一样的结构,这就是二叉树。

核心概念二:什么是平衡二叉树?

平衡二叉树就像一个走路很稳的人。在二叉树中,每个节点的左子树和右子树就像人的两只脚。平衡二叉树要求每个节点的左子树和右子树的高度差不能超过1,也就是说,两只脚的长度差不能太大,否则人就会摔倒。这样,整个树就会保持一种平衡的状态,不会出现一边倒的情况。

核心概念三:什么是AVL树?

AVL树是一种特殊的平衡二叉树,它就像一个非常聪明的图书管理员。在AVL树中,每次插入或者删除一个节点的时候,它都会自动检查树的平衡情况。如果发现树变得不平衡了,它就会像图书管理员调整书架上的书一样,通过一些操作来重新调整树的结构,让树再次变得平衡。这样,AVL树就可以始终保持高效的查找、插入和删除操作。

核心概念之间的关系(用小学生能理解的比喻)

概念一和概念二的关系:二叉树和平衡二叉树如何合作?

二叉树就像一个大房子,里面有很多房间,每个房间都可以住人。但是,如果这些房间的分布很不均匀,有些地方房间很多,有些地方房间很少,那么住在这个大房子里就会很不方便。平衡二叉树就是对这个大房子进行了改造,让房间的分布变得更加均匀,这样人们在房子里活动就会更加方便。也就是说,平衡二叉树是在二叉树的基础上,增加了平衡的条件,让二叉树变得更加高效。

概念二和概念三的关系:平衡二叉树和AVL树如何合作?

平衡二叉树就像一个设计得很合理的房子,但是随着时间的推移,房子里的东西可能会越来越多,或者有些东西会被搬走,这样房子就可能会变得不平衡。AVL树就像一个聪明的管家,他会时刻关注房子的平衡情况。一旦发现房子变得不平衡了,他就会马上采取措施,重新调整房子里的东西,让房子再次变得平衡。也就是说,AVL树是一种能够自动维护平衡的平衡二叉树。

概念一和概念三的关系:二叉树和AVL树如何合作?

二叉树是一个基础的结构,就像一个空的架子,我们可以在上面放很多东西。AVL树是在这个架子的基础上,增加了自动平衡的功能。就像我们在架子上放东西的时候,AVL树会自动调整架子的结构,让架子始终保持稳定,不会因为东西放得不均匀而倒塌。所以,AVL树是在二叉树的基础上发展而来的,它继承了二叉树的结构,同时又具备了自动平衡的能力。

核心概念原理和架构的文本示意图(专业定义)

  • 二叉树:二叉树是一种每个节点最多有两个子节点的树结构。节点包含一个数据元素,以及指向左子节点和右子节点的指针。如果一个节点没有左子节点或右子节点,则相应的指针为空。
  • 平衡二叉树:平衡二叉树是一种特殊的二叉树,对于树中的每个节点,其左子树和右子树的高度差不超过1。树的高度是指从根节点到最远叶子节点的最长路径上的节点数。
  • AVL树:AVL树是一种自平衡的二叉搜索树。在插入或删除节点后,AVL树会通过旋转操作来调整树的结构,以保持树的平衡。旋转操作包括左旋、右旋、左右旋和右左旋。

Mermaid 流程图

根节点
左子节点
右子节点
左子节点的左子节点
左子节点的右子节点
右子节点的左子节点
右子节点的右子节点

这个流程图展示了一个简单的二叉树结构,根节点有左右两个子节点,每个子节点又可以有自己的左右子节点。

核心算法原理 & 具体操作步骤

AVL树的插入操作

AVL树的插入操作和普通的二叉搜索树的插入操作类似,但是在插入节点后,需要检查树的平衡情况,如果树变得不平衡了,就需要进行平衡调整。

下面是用Python实现的AVL树的插入操作代码:

class TreeNode:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.height = 1

class AVLTree:
    def insert(self, root, key):
        # 普通的BST插入操作
        if not root:
            return TreeNode(key)
        elif key < root.key:
            root.left = self.insert(root.left, key)
        else:
            root.right = self.insert(root.right, key)

        # 更新节点的高度
        root.height = 1 + max(self.get_height(root.left), self.get_height(root.right))

        # 获取平衡因子
        balance = self.get_balance(root)

        # 左左情况
        if balance > 1 and key < root.left.key:
            return self.right_rotate(root)

        # 右右情况
        if balance < -1 and key > root.right.key:
            return self.left_rotate(root)

        # 左右情况
        if balance > 1 and key > root.left.key:
            root.left = self.left_rotate(root.left)
            return self.right_rotate(root)

        # 右左情况
        if balance < -1 and key < root.right.key:
            root.right = self.right_rotate(root.right)
            return self.left_rotate(root)

        return root

    def get_height(self, root):
        if not root:
            return 0
        return root.height

    def get_balance(self, root):
        if not root:
            return 0
        return self.get_height(root.left) - self.get_height(root.right)

    def left_rotate(self, z):
        y = z.right
        T2 = y.left

        # 执行旋转
        y.left = z
        z.right = T2

        # 更新高度
        z.height = 1 + max(self.get_height(z.left), self.get_height(z.right))
        y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))

        return y

    def right_rotate(self, z):
        y = z.left
        T3 = y.right

        # 执行旋转
        y.right = z
        z.left = T3

        # 更新高度
        z.height = 1 + max(self.get_height(z.left), self.get_height(z.right))
        y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))

        return y

代码解释

  1. TreeNode类:定义了树的节点结构,每个节点包含一个键值、左右子节点指针和节点的高度。
  2. AVLTree类
    • insert方法:首先进行普通的二叉搜索树插入操作,然后更新节点的高度,计算平衡因子。根据平衡因子的情况,判断树是否需要进行旋转操作来保持平衡。
    • get_height方法:用于获取节点的高度。
    • get_balance方法:用于计算节点的平衡因子,即左子树高度减去右子树高度。
    • left_rotate方法:执行左旋操作,将节点进行顺时针旋转。
    • right_rotate方法:执行右旋操作,将节点进行逆时针旋转。

AVL树的删除操作

AVL树的删除操作也和普通的二叉搜索树的删除操作类似,但是在删除节点后,同样需要检查树的平衡情况,并进行相应的调整。

下面是用Python实现的AVL树的删除操作代码:

    def delete(self, root, key):
        # 普通的BST删除操作
        if not root:
            return root
        elif key < root.key:
            root.left = self.delete(root.left, key)
        elif key > root.key:
            root.right = self.delete(root.right, key)
        else:
            if root.left is None:
                temp = root.right
                root = None
                return temp
            elif root.right is None:
                temp = root.left
                root = None
                return temp
            temp = self.get_min_value_node(root.right)
            root.key = temp.key
            root.right = self.delete(root.right, temp.key)

        # 如果树只有一个节点,直接返回
        if root is None:
            return root

        # 更新节点的高度
        root.height = 1 + max(self.get_height(root.left), self.get_height(root.right))

        # 获取平衡因子
        balance = self.get_balance(root)

        # 左左情况
        if balance > 1 and self.get_balance(root.left) >= 0:
            return self.right_rotate(root)

        # 左右情况
        if balance > 1 and self.get_balance(root.left) < 0:
            root.left = self.left_rotate(root.left)
            return self.right_rotate(root)

        # 右右情况
        if balance < -1 and self.get_balance(root.right) <= 0:
            return self.left_rotate(root)

        # 右左情况
        if balance < -1 and self.get_balance(root.right) > 0:
            root.right = self.right_rotate(root.right)
            return self.left_rotate(root)

        return root

    def get_min_value_node(self, root):
        if root is None or root.left is None:
            return root
        return self.get_min_value_node(root.left)

代码解释

  1. delete方法:首先进行普通的二叉搜索树删除操作,然后更新节点的高度,计算平衡因子。根据平衡因子的情况,判断树是否需要进行旋转操作来保持平衡。
  2. get_min_value_node方法:用于找到右子树中的最小节点,用于替换要删除的节点。

数学模型和公式 & 详细讲解 & 举例说明

平衡因子

AVL树的平衡因子是通过计算节点的左子树高度减去右子树高度得到的。平衡因子的计算公式为:
B a l a n c e F a c t o r = H e i g h t l e f t − H e i g h t r i g h t BalanceFactor = Height_{left} - Height_{right} BalanceFactor=HeightleftHeightright
其中, H e i g h t l e f t Height_{left} Heightleft 是节点的左子树的高度, H e i g h t r i g h t Height_{right} Heightright 是节点的右子树的高度。

举例说明

假设有一个AVL树,节点A的左子树高度为3,右子树高度为2,那么节点A的平衡因子为:
B a l a n c e F a c t o r A = 3 − 2 = 1 BalanceFactor_A = 3 - 2 = 1 BalanceFactorA=32=1
由于平衡因子的绝对值不超过1,所以节点A所在的子树是平衡的。

如果节点B的左子树高度为1,右子树高度为3,那么节点B的平衡因子为:
B a l a n c e F a c t o r B = 1 − 3 = − 2 BalanceFactor_B = 1 - 3 = -2 BalanceFactorB=13=2
由于平衡因子的绝对值大于1,所以节点B所在的子树是不平衡的,需要进行平衡调整。

项目实战:代码实际案例和详细解释说明

开发环境搭建

为了实现AVL树,我们可以使用Python语言。Python是一种简单易学、功能强大的编程语言,非常适合用于数据结构和算法的实现。

我们只需要安装Python环境即可,可以从Python官方网站(https://www.python.org/downloads/)下载并安装最新版本的Python。

源代码详细实现和代码解读

下面是一个完整的AVL树实现的Python代码示例:

class TreeNode:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.height = 1

class AVLTree:
    def insert(self, root, key):
        # 普通的BST插入操作
        if not root:
            return TreeNode(key)
        elif key < root.key:
            root.left = self.insert(root.left, key)
        else:
            root.right = self.insert(root.right, key)

        # 更新节点的高度
        root.height = 1 + max(self.get_height(root.left), self.get_height(root.right))

        # 获取平衡因子
        balance = self.get_balance(root)

        # 左左情况
        if balance > 1 and key < root.left.key:
            return self.right_rotate(root)

        # 右右情况
        if balance < -1 and key > root.right.key:
            return self.left_rotate(root)

        # 左右情况
        if balance > 1 and key > root.left.key:
            root.left = self.left_rotate(root.left)
            return self.right_rotate(root)

        # 右左情况
        if balance < -1 and key < root.right.key:
            root.right = self.right_rotate(root.right)
            return self.left_rotate(root)

        return root

    def delete(self, root, key):
        # 普通的BST删除操作
        if not root:
            return root
        elif key < root.key:
            root.left = self.delete(root.left, key)
        elif key > root.key:
            root.right = self.delete(root.right, key)
        else:
            if root.left is None:
                temp = root.right
                root = None
                return temp
            elif root.right is None:
                temp = root.left
                root = None
                return temp
            temp = self.get_min_value_node(root.right)
            root.key = temp.key
            root.right = self.delete(root.right, temp.key)

        # 如果树只有一个节点,直接返回
        if root is None:
            return root

        # 更新节点的高度
        root.height = 1 + max(self.get_height(root.left), self.get_height(root.right))

        # 获取平衡因子
        balance = self.get_balance(root)

        # 左左情况
        if balance > 1 and self.get_balance(root.left) >= 0:
            return self.right_rotate(root)

        # 左右情况
        if balance > 1 and self.get_balance(root.left) < 0:
            root.left = self.left_rotate(root.left)
            return self.right_rotate(root)

        # 右右情况
        if balance < -1 and self.get_balance(root.right) <= 0:
            return self.left_rotate(root)

        # 右左情况
        if balance < -1 and self.get_balance(root.right) > 0:
            root.right = self.right_rotate(root.right)
            return self.left_rotate(root)

        return root

    def get_height(self, root):
        if not root:
            return 0
        return root.height

    def get_balance(self, root):
        if not root:
            return 0
        return self.get_height(root.left) - self.get_height(root.right)

    def left_rotate(self, z):
        y = z.right
        T2 = y.left

        # 执行旋转
        y.left = z
        z.right = T2

        # 更新高度
        z.height = 1 + max(self.get_height(z.left), self.get_height(z.right))
        y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))

        return y

    def right_rotate(self, z):
        y = z.left
        T3 = y.right

        # 执行旋转
        y.right = z
        z.left = T3

        # 更新高度
        z.height = 1 + max(self.get_height(z.left), self.get_height(z.right))
        y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))

        return y

    def get_min_value_node(self, root):
        if root is None or root.left is None:
            return root
        return self.get_min_value_node(root.left)

    def pre_order(self, root):
        if root:
            print(root.key, end=" ")
            self.pre_order(root.left)
            self.pre_order(root.right)

# 测试代码
avl_tree = AVLTree()
root = None
keys = [9, 5, 10, 0, 6, 11, -1, 1, 2]
for key in keys:
    root = avl_tree.insert(root, key)

print("插入节点后的前序遍历结果:")
avl_tree.pre_order(root)

root = avl_tree.delete(root, 10)
print("\n删除节点10后的前序遍历结果:")
avl_tree.pre_order(root)

代码解读与分析

  1. TreeNode类:定义了树的节点结构,包含键值、左右子节点指针和节点的高度。
  2. AVLTree类
    • insert方法:实现了AVL树的插入操作,包括普通的二叉搜索树插入和平衡调整。
    • delete方法:实现了AVL树的删除操作,包括普通的二叉搜索树删除和平衡调整。
    • get_height方法:用于获取节点的高度。
    • get_balance方法:用于计算节点的平衡因子。
    • left_rotate方法:执行左旋操作。
    • right_rotate方法:执行右旋操作。
    • get_min_value_node方法:用于找到右子树中的最小节点。
    • pre_order方法:实现了前序遍历,用于打印树的节点。
  3. 测试代码:创建一个AVL树对象,插入一些节点,然后打印插入节点后的前序遍历结果。接着删除一个节点,再打印删除节点后的前序遍历结果。

实际应用场景

数据库索引

在数据库中,AVL树可以用于实现索引结构。数据库中的数据通常非常庞大,为了快速查找数据,需要使用索引。AVL树的平衡特性可以保证数据的查找、插入和删除操作都能在 O ( l o g n ) O(log n) O(logn) 的时间复杂度内完成,从而提高数据库的查询效率。

内存管理

在操作系统的内存管理中,AVL树可以用于管理内存块。操作系统需要快速地分配和释放内存块,AVL树的高效操作可以满足这一需求。通过将内存块按照地址或大小进行排序,存储在AVL树中,可以快速地找到合适的内存块进行分配或释放。

缓存系统

在缓存系统中,AVL树可以用于实现缓存淘汰策略。缓存系统通常有一定的容量限制,当缓存满时,需要淘汰一些数据。AVL树可以根据数据的访问频率或时间等因素对数据进行排序,当需要淘汰数据时,可以快速地找到最不常用的数据进行淘汰。

工具和资源推荐

在线学习平台

  • Coursera:提供了很多关于数据结构和算法的课程,包括AVL树的详细讲解。
  • EdX:有许多知名大学的计算机课程,其中也有关于AVL树的内容。
  • LeetCode:是一个刷题平台,上面有很多关于AVL树的练习题,可以帮助你巩固所学知识。

书籍

  • 《算法导论》:这是一本经典的算法书籍,其中有关于AVL树的详细介绍和分析。
  • 《数据结构与算法分析——C语言描述》:用C语言实现了各种数据结构和算法,包括AVL树,适合初学者学习。

未来发展趋势与挑战

发展趋势

  • 与其他数据结构的结合:未来,AVL树可能会与其他数据结构结合使用,以实现更高效的数据存储和查询。例如,与哈希表结合,利用哈希表的快速查找特性和AVL树的平衡特性,提高数据处理的效率。
  • 在分布式系统中的应用:随着分布式系统的发展,AVL树可能会在分布式环境中得到更广泛的应用。例如,在分布式文件系统中,使用AVL树来管理文件的索引,提高文件的查找和访问效率。

挑战

  • 内存开销:AVL树需要额外的空间来存储节点的高度信息,这会增加内存开销。在内存有限的设备上,如何减少AVL树的内存开销是一个挑战。
  • 高并发场景下的性能:在高并发场景下,AVL树的插入和删除操作可能会导致频繁的平衡调整,从而影响性能。如何优化AVL树在高并发场景下的性能是一个需要解决的问题。

总结:学到了什么?

核心概念回顾:

  • 我们学习了二叉树,它就像一个有规则的家族树,每个节点最多有两个子节点。
  • 我们了解了平衡二叉树,它要求每个节点的左子树和右子树的高度差不超过1,就像一个走路很稳的人。
  • 我们掌握了AVL树,它是一种自平衡的二叉搜索树,能够在插入和删除节点时自动调整树的结构,保持树的平衡。

概念关系回顾:

  • 平衡二叉树是在二叉树的基础上增加了平衡的条件,让二叉树变得更加高效。
  • AVL树是一种能够自动维护平衡的平衡二叉树,就像一个聪明的管家,时刻关注树的平衡情况。
  • AVL树继承了二叉树的结构,同时又具备了自动平衡的能力,使得数据的查找、插入和删除操作都能在比较短的时间内完成。

思考题:动动小脑筋

思考题一:你能想到生活中还有哪些地方可以用AVL树来解决问题吗?

思考题二:如果在AVL树中插入一个节点后,树的平衡因子变得非常大,该如何快速地调整树的结构?

思考题三:AVL树的旋转操作有左旋、右旋、左右旋和右左旋,你能自己动手画一下这些旋转操作的示意图吗?

附录:常见问题与解答

问题一:AVL树和普通的二叉搜索树有什么区别?

解答:普通的二叉搜索树在插入和删除节点时可能会变得非常不平衡,导致数据的查找、插入和删除操作的时间复杂度可能会达到 O ( n ) O(n) O(n)。而AVL树是一种自平衡的二叉搜索树,它能够在插入和删除节点时自动调整树的结构,保持树的平衡,使得数据的查找、插入和删除操作的时间复杂度始终保持在 O ( l o g n ) O(log n) O(logn)

问题二:AVL树的旋转操作是如何实现的?

解答:AVL树的旋转操作包括左旋、右旋、左右旋和右左旋。左旋和右旋是基本的旋转操作,左右旋和右左旋是在左旋和右旋的基础上进行的组合操作。旋转操作的目的是通过调整节点的位置,使得树的结构变得更加平衡。具体的实现可以参考前面的代码示例。

问题三:AVL树的时间复杂度是多少?

解答:AVL树的查找、插入和删除操作的时间复杂度都是 O ( l o g n ) O(log n) O(logn),其中 n n n 是树中节点的数量。这是因为AVL树的平衡特性保证了树的高度始终保持在 O ( l o g n ) O(log n) O(logn) 的级别。

扩展阅读 & 参考资料

  • Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.
  • Weiss, M. A. (1997). Data Structures and Algorithm Analysis in C (2nd ed.). Addison-Wesley.
  • GeeksforGeeks. (n.d.). AVL Tree | Set 1 (Insertion). Retrieved from https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值