揭秘B+树的数据结构与算法原理

揭秘B+树的数据结构与算法原理

关键词:B+树、数据结构、数据库索引、平衡树、磁盘IO、范围查询、B树

摘要:本文将深入浅出地讲解B+树这一重要的数据结构,从基本概念到算法实现,再到实际应用场景。我们将通过生活中的类比帮助理解B+树的工作原理,分析它为何成为数据库索引的首选结构,并通过Python代码示例展示B+树的具体实现。文章还将对比B+树与B树、二叉搜索树的差异,探讨B+树在数据库系统中的优势。

背景介绍

目的和范围

本文旨在全面介绍B+树数据结构,包括其设计原理、操作算法和实际应用。我们将从基础概念出发,逐步深入到实现细节和性能分析,帮助读者理解为什么B+树在数据库系统中如此重要。

预期读者

本文适合有一定编程基础,对数据结构和算法感兴趣的读者。无论是计算机专业的学生、软件工程师,还是对数据库内部实现机制好奇的技术爱好者,都能从本文中获得有价值的知识。

文档结构概述

文章首先通过生活化的比喻引入B+树的概念,然后详细解释其结构和操作原理,接着通过Python代码实现一个简化版的B+树,最后讨论其在实际系统中的应用和优化技巧。

术语表

核心术语定义
  • B+树:一种多路平衡搜索树,常用于数据库和文件系统的索引实现
  • 节点:B+树中的基本存储单元,包含键和指针
  • 阶数(m):B+树节点最多可以拥有的子节点数
  • 叶子节点:存储实际数据的节点,包含所有键值对
  • 内部节点:仅包含导航信息的节点,用于快速定位数据
相关概念解释
  • 平衡树:保持左右子树高度平衡的树结构,确保操作效率
  • 磁盘IO:从磁盘读取或写入数据的操作,通常是数据库性能瓶颈
  • 范围查询:查询某个范围内的所有记录的操作
缩略词列表
  • IO:Input/Output(输入/输出)
  • DBMS:Database Management System(数据库管理系统)
  • RDBMS:Relational Database Management System(关系型数据库管理系统)

核心概念与联系

故事引入

想象你是一个图书馆管理员,面对成千上万的书籍,如何快速找到读者需要的书呢?你可能会想到使用目录卡片——按照书名排序,每个卡片记录书名和书架位置。但如果卡片太多,查找还是很慢。于是你决定将卡片分组:先有一个大目录,指向各个小目录,小目录再指向具体的卡片。这就是B+树的基本思想——通过多级索引快速定位数据。

核心概念解释

核心概念一:什么是B+树?
B+树就像一本超级智能的目录册,它有以下几个特点:

  1. 所有数据都整齐地存放在最底层的"叶子页面"上
  2. 上面的"目录页面"只记录关键信息和指向下层的指针
  3. 每个页面都尽可能装满,减少翻页次数
  4. 所有叶子页面通过指针连在一起,方便顺序查找

核心概念二:为什么需要B+树?
传统二叉搜索树在数据量大时会有两个问题:

  1. 树太高,查找需要多次比较
  2. 不适应磁盘存储,因为磁盘读取是按块进行的

B+树通过以下方式解决这些问题:

  1. 每个节点可以有很多孩子(多路),大大降低树的高度
  2. 节点大小设计为磁盘块大小的整数倍,减少IO次数

核心概念三:B+树与B树的区别
虽然B树和B+树都是平衡多路搜索树,但它们有几个关键区别:

  1. B+树的数据只存储在叶子节点,而B树的数据可以存储在任何节点
  2. B+树的叶子节点通过指针连接成链表,便于范围查询
  3. B+树的内部节点只包含键,不包含数据,因此可以存储更多键

核心概念之间的关系

概念一和概念二的关系:
B+树的结构设计(概念一)直接解决了大规模数据高效访问的问题(概念二)。就像图书馆的目录系统,多级索引结构使得我们不需要翻遍所有卡片就能找到目标。

概念二和概念三的关系:
B+树相比B树的改进(概念三)进一步优化了磁盘IO和范围查询性能(概念二)。就像在图书馆目录中,把所有书籍信息都放在最底层,并在同层建立连接,既节省了上层空间,又方便按顺序浏览。

概念一和概念三的关系:
B+树的特殊结构(概念一)决定了它与B树的关键区别(概念三)。就像图书馆可以选择把所有书籍信息都放在目录卡片上(B树),或者只放在最底层的卡片上而上面只放导航信息(B+树)。

核心概念原理和架构的文本示意图

一个典型的B+树结构如下:

[内部节点]
|-- [键1, 键2, ...]
|   |-- [指针1] -> 子树1
|   |-- [指针2] -> 子树2
|   ...
|
[叶子节点]
|-- [键1, 数据指针1] -> 实际数据1
|-- [键2, 数据指针2] -> 实际数据2
...
|
[叶子节点链表]
叶子节点1 <-> 叶子节点2 <-> 叶子节点3 <-> ...

Mermaid 流程图

根节点 10 20
子树1 5 8
子树2 15 18
子树3 25 30
叶子1 1 3 5
叶子2 7 8 9
叶子3 10 12 15
叶子4 17 18 19
叶子5 20 22 25
叶子6 28 30 35

核心算法原理 & 具体操作步骤

B+树的核心操作包括查找、插入和删除。下面我们分别介绍这些操作的原理和实现步骤。

查找操作

查找是B+树最基本的操作,其时间复杂度为O(log_m n),其中m是B+树的阶数,n是树中元素的数量。

查找算法步骤:

  1. 从根节点开始
  2. 在当前节点中找到第一个不小于查找键的键
  3. 如果当前节点是内部节点,沿对应指针进入子节点
  4. 如果当前节点是叶子节点,检查是否存在查找键
    • 存在:返回对应数据
    • 不存在:返回未找到

Python实现查找:

def search(self, key):
    node = self.root
    while not node.is_leaf:
        # 在节点中找到第一个不小于key的键的索引
        idx = bisect.bisect_right(node.keys, key)
        # 沿指针进入子节点
        node = node.children[idx]
    # 在叶子节点中查找
    idx = bisect.bisect_left(node.keys, key)
    if idx < len(node.keys) and node.keys[idx] == key:
        return node.values[idx]
    return None

插入操作

插入操作需要维护B+树的平衡性,可能导致节点分裂和树高增长。

插入算法步骤:

  1. 查找键应该插入的叶子节点
  2. 如果叶子节点有空间,直接插入并保持有序
  3. 如果叶子节点已满,则分裂为两个节点:
    • 创建一个新叶子节点
    • 将原节点键值对均分到两个节点
    • 将新节点的第一个键插入父节点
    • 如果父节点已满,递归分裂父节点
  4. 如果分裂传播到根节点,则创建新的根节点

Python实现插入:

def insert(self, key, value):
    leaf = self._find_leaf(key)
    if len(leaf.keys) < self.order - 1:
        self._insert_into_leaf(leaf, key, value)
        return
    
    # 分裂叶子节点
    new_leaf = BPlusTree.LeafNode(self.order)
    self._split_leaf(leaf, new_leaf)
    
    # 决定新键插入哪个叶子
    if key < new_leaf.keys[0]:
        self._insert_into_leaf(leaf, key, value)
    else:
        self._insert_into_leaf(new_leaf, key, value)
    
    # 更新父节点
    self._insert_into_parent(leaf, new_leaf.keys[0], new_leaf)

def _split_leaf(self, old_leaf, new_leaf):
    # 移动一半键值对到新节点
    split_point = len(old_leaf.keys) // 2
    new_leaf.keys = old_leaf.keys[split_point:]
    new_leaf.values = old_leaf.values[split_point:]
    old_leaf.keys = old_leaf.keys[:split_point]
    old_leaf.values = old_leaf.values[:split_point]
    
    # 更新叶子链表
    new_leaf.next = old_leaf.next
    old_leaf.next = new_leaf

删除操作

删除操作也需要维护树的平衡,可能导致节点合并或重新分配键。

删除算法步骤:

  1. 查找包含键的叶子节点
  2. 从叶子节点中删除键值对
  3. 如果叶子节点键数过少:
    • 尝试从左兄弟借一个键
    • 尝试从右兄弟借一个键
    • 如果兄弟节点也无法借出,则合并节点
  4. 如果合并发生,递归调整父节点
  5. 如果根节点只剩下一个子节点,则降低树高

Python实现删除:

def delete(self, key):
    leaf = self._find_leaf(key)
    if key not in leaf.keys:
        return False
    
    # 从叶子节点删除
    idx = leaf.keys.index(key)
    leaf.keys.pop(idx)
    leaf.values.pop(idx)
    
    # 检查是否需要重新平衡
    if len(leaf.keys) < (self.order - 1) // 2:
        self._rebalance(leaf)
    return True

def _rebalance(self, node):
    if node == self.root:
        if len(node.children) == 1 and not node.is_leaf:
            self.root = node.children[0]
        return
    
    parent = node.parent
    idx = parent.children.index(node)
    
    # 尝试从左兄弟借
    if idx > 0:
        left_sib = parent.children[idx - 1]
        if len(left_sib.keys) > (self.order - 1) // 2:
            self._borrow_from_left(node, left_sib, parent, idx)
            return
    
    # 尝试从右兄弟借
    if idx < len(parent.children) - 1:
        right_sib = parent.children[idx + 1]
        if len(right_sib.keys) > (self.order - 1) // 2:
            self._borrow_from_right(node, right_sib, parent, idx)
            return
    
    # 需要合并
    if idx > 0:
        # 与左兄弟合并
        left_sib = parent.children[idx - 1]
        self._merge_nodes(left_sib, node, parent, idx - 1)
    else:
        # 与右兄弟合并
        right_sib = parent.children[idx + 1]
        self._merge_nodes(node, right_sib, parent, idx)
    
    # 递归调整父节点
    self._rebalance(parent)

数学模型和公式 & 详细讲解

B+树的高度分析

B+树的高度是影响其性能的关键因素。对于一个包含n个键的m阶B+树:

  • 最小高度:当所有节点都尽可能填满时
    h m i n = ⌈ log ⁡ m ( n + 1 ) ⌉ h_{min} = \lceil \log_m (n+1) \rceil hmin=logm(n+1)⌉

  • 最大高度:当所有节点都尽可能少填满时
    h m a x = ⌈ log ⁡ ⌈ m / 2 ⌉ n + 1 2 ⌉ + 1 h_{max} = \lceil \log_{\lceil m/2 \rceil} \frac{n+1}{2} \rceil + 1 hmax=logm/22n+1+1

举例说明:
假设有一个4阶B+树(每个节点最多3个键),存储1,000,000个键:

  • 最小高度:⌈log₄(1,000,001)⌉ ≈ ⌈9.97⌉ = 10
  • 最大高度:⌈log₂(500,000.5)⌉ + 1 ≈ ⌈18.93⌉ + 1 = 20

这意味着在最坏情况下,查找1,000,000个键中的任何一个最多需要20次节点访问。

节点填充率分析

B+树的节点填充率直接影响空间利用率和性能。对于m阶B+树:

  • 内部节点最少有⌈m/2⌉个孩子
  • 叶子节点最少有⌈(m-1)/2⌉个键

因此,B+树的空间利用率通常在50%-100%之间。较高的填充率意味着:

  1. 更少的磁盘空间浪费
  2. 更低的树高度
  3. 更少的磁盘IO操作

性能比较:B+树 vs B树 vs 二叉搜索树

指标B+树B树二叉搜索树
查找复杂度O(log_m n)O(log_m n)O(log n)
范围查询效率极高(叶子链表)中等
高度最低
磁盘IO最少较少
适用场景数据库索引文件系统内存数据

项目实战:代码实际案例和详细解释说明

开发环境搭建

我们将使用Python实现一个简化版的B+树。所需环境:

  • Python 3.6+
  • 无额外依赖库

源代码详细实现和代码解读

以下是B+树的核心实现代码:

import bisect

class BPlusTree:
    class Node:
        def __init__(self, order, is_leaf=False):
            self.order = order
            self.is_leaf = is_leaf
            self.keys = []
            self.children = []
            self.next = None  # 用于叶子节点链表
            self.parent = None
        
        def __str__(self):
            return f"{'Leaf' if self.is_leaf else 'Int'}:{self.keys}"
    
    class LeafNode(Node):
        def __init__(self, order):
            super().__init__(order, is_leaf=True)
            self.values = []
        
        def __str__(self):
            return f"Leaf:{list(zip(self.keys, self.values))}"
    
    def __init__(self, order=3):
        self.order = order
        self.root = self.LeafNode(order)
    
    def _find_leaf(self, key):
        node = self.root
        while not node.is_leaf:
            idx = bisect.bisect_right(node.keys, key)
            node = node.children[idx]
        return node
    
    def search(self, key):
        leaf = self._find_leaf(key)
        idx = bisect.bisect_left(leaf.keys, key)
        if idx < len(leaf.keys) and leaf.keys[idx] == key:
            return leaf.values[idx]
        return None
    
    def range_search(self, start, end):
        results = []
        leaf = self._find_leaf(start)
        while leaf:
            for i, key in enumerate(leaf.keys):
                if start <= key <= end:
                    results.append((key, leaf.values[i]))
                elif key > end:
                    return results
            leaf = leaf.next
        return results
    
    def insert(self, key, value):
        leaf = self._find_leaf(key)
        if len(leaf.keys) < self.order - 1:
            self._insert_into_leaf(leaf, key, value)
            return
        
        # 分裂叶子节点
        new_leaf = self.LeafNode(self.order)
        self._split_leaf(leaf, new_leaf)
        
        # 决定新键插入哪个叶子
        if key < new_leaf.keys[0]:
            self._insert_into_leaf(leaf, key, value)
        else:
            self._insert_into_leaf(new_leaf, key, value)
        
        # 更新父节点
        self._insert_into_parent(leaf, new_leaf.keys[0], new_leaf)
    
    def _insert_into_leaf(self, leaf, key, value):
        idx = bisect.bisect_left(leaf.keys, key)
        leaf.keys.insert(idx, key)
        leaf.values.insert(idx, value)
    
    def _split_leaf(self, old_leaf, new_leaf):
        split_point = len(old_leaf.keys) // 2
        new_leaf.keys = old_leaf.keys[split_point:]
        new_leaf.values = old_leaf.values[split_point:]
        old_leaf.keys = old_leaf.keys[:split_point]
        old_leaf.values = old_leaf.values[:split_point]
        
        # 更新叶子链表
        new_leaf.next = old_leaf.next
        old_leaf.next = new_leaf
        new_leaf.parent = old_leaf.parent
    
    def _insert_into_parent(self, left, key, right):
        if left.parent is None:
            # 创建新的根节点
            new_root = self.Node(self.order)
            new_root.keys = [key]
            new_root.children = [left, right]
            left.parent = new_root
            right.parent = new_root
            self.root = new_root
            return
        
        parent = left.parent
        idx = bisect.bisect_right(parent.keys, key)
        parent.keys.insert(idx, key)
        parent.children.insert(idx + 1, right)
        right.parent = parent
        
        if len(parent.keys) >= self.order:
            # 分裂父节点
            new_node = self.Node(self.order)
            split_point = len(parent.keys) // 2
            split_key = parent.keys[split_point]
            
            new_node.keys = parent.keys[split_point + 1:]
            new_node.children = parent.children[split_point + 1:]
            parent.keys = parent.keys[:split_point]
            parent.children = parent.children[:split_point + 1]
            
            # 更新子节点的父指针
            for child in new_node.children:
                child.parent = new_node
            
            # 递归更新父节点
            self._insert_into_parent(parent, split_key, new_node)
    
    def delete(self, key):
        leaf = self._find_leaf(key)
        if key not in leaf.keys:
            return False
        
        # 从叶子节点删除
        idx = leaf.keys.index(key)
        leaf.keys.pop(idx)
        leaf.values.pop(idx)
        
        # 检查是否需要重新平衡
        if len(leaf.keys) < (self.order - 1) // 2:
            self._rebalance(leaf)
        return True
    
    def _rebalance(self, node):
        if node == self.root:
            if len(node.children) == 1 and not node.is_leaf:
                self.root = node.children[0]
                self.root.parent = None
            return
        
        parent = node.parent
        idx = parent.children.index(node)
        
        # 尝试从左兄弟借
        if idx > 0:
            left_sib = parent.children[idx - 1]
            if len(left_sib.keys) > (self.order - 1) // 2:
                self._borrow_from_left(node, left_sib, parent, idx)
                return
        
        # 尝试从右兄弟借
        if idx < len(parent.children) - 1:
            right_sib = parent.children[idx + 1]
            if len(right_sib.keys) > (self.order - 1) // 2:
                self._borrow_from_right(node, right_sib, parent, idx)
                return
        
        # 需要合并
        if idx > 0:
            # 与左兄弟合并
            left_sib = parent.children[idx - 1]
            self._merge_nodes(left_sib, node, parent, idx - 1)
        else:
            # 与右兄弟合并
            right_sib = parent.children[idx + 1]
            self._merge_nodes(node, right_sib, parent, idx)
        
        # 递归调整父节点
        self._rebalance(parent)
    
    def _borrow_from_left(self, node, left_sib, parent, idx):
        if node.is_leaf:
            # 叶子节点借键
            borrowed_key = left_sib.keys.pop()
            borrowed_val = left_sib.values.pop()
            node.keys.insert(0, borrowed_key)
            node.values.insert(0, borrowed_val)
            parent.keys[idx - 1] = node.keys[0]
        else:
            # 内部节点借键
            borrowed_key = parent.keys[idx - 1]
            borrowed_child = left_sib.children.pop()
            node.keys.insert(0, borrowed_key)
            node.children.insert(0, borrowed_child)
            borrowed_child.parent = node
            parent.keys[idx - 1] = left_sib.keys.pop()
    
    def _borrow_from_right(self, node, right_sib, parent, idx):
        if node.is_leaf:
            # 叶子节点借键
            borrowed_key = right_sib.keys.pop(0)
            borrowed_val = right_sib.values.pop(0)
            node.keys.append(borrowed_key)
            node.values.append(borrowed_val)
            parent.keys[idx] = right_sib.keys[0]
        else:
            # 内部节点借键
            borrowed_key = parent.keys[idx]
            borrowed_child = right_sib.children.pop(0)
            node.keys.append(borrowed_key)
            node.children.append(borrowed_child)
            borrowed_child.parent = node
            parent.keys[idx] = right_sib.keys.pop(0)
    
    def _merge_nodes(self, left, right, parent, idx):
        if left.is_leaf:
            # 合并叶子节点
            left.keys.extend(right.keys)
            left.values.extend(right.values)
            left.next = right.next
        else:
            # 合并内部节点
            left.keys.append(parent.keys.pop(idx))
            left.keys.extend(right.keys)
            left.children.extend(right.children)
            for child in right.children:
                child.parent = left
        
        parent.children.pop(idx + 1)
        
        if len(parent.keys) == 0 and parent == self.root:
            self.root = left
            self.root.parent = None

代码解读与分析

  1. 节点结构

    • Node类是所有节点的基类,包含键列表和子节点列表
    • LeafNode是叶子节点,额外包含值列表和指向下一个叶子的指针
  2. 查找操作

    • _find_leaf方法从根节点开始,沿着键的指引找到合适的叶子节点
    • search方法在叶子节点中使用二分查找定位具体键
  3. 插入操作

    • 当叶子节点满时,会分裂为两个节点,并将中间键提升到父节点
    • 如果父节点也满了,会递归分裂直到根节点
  4. 删除操作

    • 删除后如果节点键数过少,会尝试从兄弟节点借键或合并节点
    • 合并操作可能导致父节点键数减少,需要递归调整
  5. 范围查询

    • 利用叶子节点的链表结构,可以高效地执行范围查询
    • 从起始键所在的叶子开始,沿着链表遍历直到超过结束键

这个实现虽然简化,但包含了B+树的所有核心功能。在实际数据库系统中,B+树的实现会更加复杂,需要考虑并发控制、持久化存储、缓存优化等问题。

实际应用场景

数据库索引

B+树是关系型数据库中最常用的索引结构,几乎所有主流数据库系统(MySQL、PostgreSQL、Oracle等)都使用B+树作为其默认索引实现。原因包括:

  1. 高效的磁盘IO:B+树的节点大小通常设计为磁盘块大小的整数倍,每次读取一个完整的节点只需一次磁盘IO
  2. 稳定的查询性能:由于B+树是平衡树,所有操作的时间复杂度都是O(log n)
  3. 优秀范围查询:叶子节点的链表结构使得范围查询非常高效
  4. 高扇出:每个节点可以包含大量键,使得树高度保持在很低的水平

文件系统

许多现代文件系统(如NTFS、ReiserFS、XFS)使用B+树或其变种来管理文件和目录。B+树能够:

  1. 快速定位文件块
  2. 高效处理大目录
  3. 支持快速文件扩展和收缩

内存数据库

即使是在内存数据库中,B+树也因其缓存友好性而被广泛使用。内存中的B+树通常:

  1. 优化节点大小以适应CPU缓存行
  2. 使用更紧凑的存储格式
  3. 支持更高效的并发访问

工具和资源推荐

学习资源

  1. 书籍

    • 《算法导论》- Thomas H. Cormen 等人
    • 《数据库系统实现》- Hector Garcia-Molina 等人
    • 《数据结构与算法分析》- Mark Allen Weiss
  2. 在线课程

    • MIT OpenCourseWare 的算法课程
    • Coursera 上的数据结构与算法专项课程
    • Stanford 的数据库课程
  3. 可视化工具

    • B+ Tree Visualization (https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html)
    • Data Structure Visualizations (https://visualgo.net/en)

开源实现

  1. 数据库系统中的B+树实现

    • SQLite 的 btree.c
    • MySQL InnoDB 的 B+树索引实现
    • PostgreSQL 的 B-Tree 索引实现
  2. 独立B+树库

    • stx-btree (C++实现)
    • jdbm (Java实现)
    • bplustree (Python实现)

未来发展趋势与挑战

发展趋势

  1. B+树变种:针对特定场景优化的B+树变种不断涌现,如:

    • B*树:通过延迟分裂提高空间利用率
    • 前缀B+树:优化字符串键存储
    • 并行B+树:支持多核并发访问
  2. 混合索引结构:结合B+树与其他数据结构(如LSM树)的优势

  3. 非易失性内存适配:针对新兴的非易失性内存优化B+树设计

挑战

  1. 并发控制:在高并发环境下保持B+树的高效和安全
  2. SSD优化:传统B+树针对机械硬盘优化,需要调整以适应SSD特性
  3. 大数据场景:超大规模数据下的B+树性能优化
  4. 多维度查询:B+树擅长单维查询,多维查询需要其他技术补充

总结:学到了什么?

核心概念回顾:

  1. B+树是一种多路平衡搜索树,特别适合磁盘存储系统
  2. B+树与B树的关键区别在于数据只存储在叶子节点,且叶子节点形成链表
  3. B+树通过节点分裂和合并保持平衡,确保操作效率

概念关系回顾:

  1. B+树的结构设计直接解决了大规模数据高效访问的问题
  2. B+树相比B树的改进优化了磁盘IO和范围查询性能
  3. B+树在数据库系统中的成功应用证明了其设计的优越性

思考题:动动小脑筋

思考题一:
如果让你设计一个支持并发访问的B+树,你会考虑哪些并发控制策略?如何平衡并发性能和数据一致性?

思考题二:
B+树在SSD上的表现可能与机械硬盘不同,你认为需要针对SSD的哪些特性对B+树进行优化?如何优化?

思考题三:
假设你需要设计一个支持多维查询的索引结构,如何基于B+树进行扩展或组合?你会考虑哪些技术?

附录:常见问题与解答

Q1:为什么B+树的叶子节点要形成链表?
A1:叶子节点形成链表可以高效支持范围查询。当查询一个范围内的记录时,只需要找到起始键所在的叶子节点,然后沿着链表遍历即可,无需回溯到上层节点。

Q2:B+树的阶数(m)如何选择?
A2:阶数的选择通常基于磁盘块大小和键的大小。理想情况下,一个节点应该正好填满一个磁盘块,这样可以最大化IO效率。具体计算为:m ≈ (块大小 - 指针大小) / (键大小 + 指针大小)。

Q3:B+树在内存数据库中还适用吗?
A3:是的,即使在内存数据库中,B+树仍然适用,但通常会进行一些优化,如调整节点大小以适应CPU缓存行,使用更紧凑的存储格式等。B+树的缓存友好性和稳定性能使其在内存环境中依然有优势。

扩展阅读 & 参考资料

  1. Comer, D. (1979). The Ubiquitous B-Tree. ACM Computing Surveys.
  2. Graefe, G. (2011). Modern B-Tree Techniques. Foundations and Trends in Databases.
  3. MySQL官方文档中关于InnoDB索引的部分
  4. PostgreSQL官方文档中关于B-Tree索引的部分
  5. SQLite文档中关于B-Tree实现的部分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值