上市公司创新信息披露(1991-2023)

上市公司创新信息披露(1991-2023)

1863

数据简介

与传统词典法不同,本文采用“种子词集+Word2Vec相似词扩充”方法构建描述性创新信息指标。参考相关文献[11,28],对年报多次研读校验得到种子词集。相较于传统词法,Word2Vec神经网络模型可以根据语义信息将词汇转换为多维向量,并通过计算向量的相似度得到相似词。本文采用其中的CBOW(ContinuousBag-of-wordsModel)模型对中文语料进行训练。描述性创新关键词如见表1所示。

在构建描述性创新关键词词集后,本文以年报中描述性创新信息的总词频/年报总词频衡量描述性创新信息披露水平。在此基础上,本文采用当年除目标企业外其余同行企业描述性创新信息披露水平的算术平均数衡量同行描述性创新信息披露水平(Inno_Dis)。

数据来源

由数据皮皮侠团队人工整理,全部内容真实有效。

时间跨度

1991-2023

数据范围

中国A 股上市公司

数据形式

数据格式为Excel形式

数据指标

数据展示

参考文献

陈怡欣,张婷,马晨. 同行企业描述性创新信息披露的溢出效应——基于机器学习与文本分析法 [J]. 科技进步与对策, 2024, 41 (15): 22-32.

声明:本数据由数据皮皮侠团队整理,仅用于学术研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值