AVL(平衡二叉搜索树)介绍及实现

Hello 大家好。上一次我们学习了二叉搜索树,知道了他的增删查改效率是O(logN)~O(N),当二叉搜索树退化到单支树时,他的增删查改效率就是O(N),这显然是二叉搜索树的一个明显缺陷。今天,我们来学习二叉搜索树的进阶,AVL树,也就是平衡二叉搜索树,它就完美解决了二叉搜索树可能退化到单支树的情况,确保它的增删查改效率始终是O(logN)。那么接下来就让我们进入到AVL树的学习中吧。

1. AVL的概念

• AVL树是最先发明的平衡二叉查找树,AVL是一颗空树,或者具备下列性质的二叉搜索树:

  1. 它的左右子树都是AVL树,且左右子树的高度差的绝对值不超过1。
  2. AVL树是一颗高度平衡搜索二叉树,通过控制高度差去控制平衡。

• AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis是两个前苏联的科学家,他们在1962年的论文《An algorithm for the organization of information》中发表了它。

• AVL树实现这里我们引入一个平衡因子(balance factor)的概念,每个结点都有一个平衡因子,任何结点的平衡因子等于右子树的高度减去左子树的高度(也可以是左子树的高度-右子树的高度,看自己选择),也就是说任何结点的平衡因子等于0/1/-1,AVL树并不是必须要平衡因子,但是有了平衡因子可以更方便我们去进行观察和控制树是否平衡,就像一个风向标一样。

• 思考一下为什么AVL树是高度平衡搜索二叉树,要求高度差不超过1,而不是高度差是0呢?0不是更好的平衡吗?画图分析我们发现,不是不想这样设计,而是有些情况是做不到高度差是0的。比如一棵树是2个结点,4个结点等情况下,高度差最好就是1,无法做到高度差是0

• AVL树整体结点数量和分布和完全二叉树类似,高度可以控制在logN ,那么增删查改的效率也可以控制在O(logN) ,相比二叉搜索树有了本质的提升。

下面给出一个AVL树的图例

2.AVL的基本框架

实际上,AVL树相较于二叉搜索树最大的区别就是可以控制高度,它们的基本框架大体相同

template<class K>
struct AVLTreeNode
{
	//存储的值
	K _k;
	AVLTreeNode<K>* _left;
	AVLTreeNode<K>* _right;
	// 需要parent指针,后续更新平衡因子可以用到
	AVLTreeNode<K>* _parent;
	// 平衡因子
	int _bf; 
	AVLTreeNode(const K& k)
		:_k(k)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};
template<class K>
class AVLTree
{
	typedef AVLTreeNode<K> Node;
public:
private:
	Node* _root = nullptr;
};

3.AVL树的插入

相较于二叉搜索树,AVL树的插入要考虑更多因素,如平衡因子的更新以及AVL树的旋转,接下来,让我们由易入难,先习平衡因子的更新

3.1 平衡因子的更新

更新原则:

• 平衡因子 = 右子树高度-左子树高度

• 只有子树高度变化才会影响当前结点平衡因子。

• 插入结点,会增加高度,所以新增结点在parent的右子树,parent的平衡因子++,新增结点在parent的左子树,parent平衡因子–

• parent所在子树的高度是否变化决定了是否会继续往上更新

更新的几种情况:

更新后parent的平衡因子等于0,更新中parent的平衡因子变化为-1->0 或者 1->0,说明更新前parent子树一边高一边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变,不会影响parent的父亲结点的平衡因子,更新结束

更新后parent的平衡因子等于1 或 -1,更新中parent的平衡因子变化为0->1 或者 0->-1,说明更新前parent子树两边一样高,新增的插入结点后,parent所在的子树一边高一边低,parent所在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向上更新,最坏更新到根停止

更新后parent的平衡因子等于2 或 -2,更新中parent的平衡因子变化为1->2 或者 -1->-2,说明更新前parent子树一边高一边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理,旋转的目标有两个:

  1. 把parent子树旋转平衡。
  2. 降低parent子树的高度,恢复到插入结点以前的高度。所以旋转后也不需要继续往上更新,插入结束。

• 不断更新,更新到根,根的平衡因子是1或-1也停止了。

让我们来举例说明:

1.更新后parent的平衡因子等于0

2.更新后parent的平衡因子等于1 或 -1

更新到中间结点,3为根的子树高度不变,不会影响上一层,更新结束

更新后parent的平衡因子等于2 或 -2,需要旋转处理

3.2插入结点及更新平衡因子的初步代码实现

bool Insert(const K& k)
{
	if (_root == nullptr)
	{
		_root = new Node(k);
		return true;
	}
	Node* parent = nullptr;
	Node* cur = _root;
	//查找插入位置
	while (cur)
	{
		if (cur->_k < k)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_k > k)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}
	//插入节点
	cur = new Node(k);
	if (parent->_k < k)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;

	// 更新平衡因子
	while (parent)
	{
		// 更新平衡因子
		if (cur == parent->_left)
			parent->_bf--;
		else
			parent->_bf++;
		//判断更新的情况
		if (parent->_bf == 0)
		{
			// 更新结束
			break;
		}
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			// 继续往上更新
			cur = parent;
			parent = parent->_parent;
		}
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			// 不平衡了,旋转处理
			...
		}
		else
		{
			assert(false);
		}
	}
	return true;
}

4. 旋转

4.1旋转的原则

  1. 保持搜索树的规则

  2. 让旋转的树从不满足平衡变平衡,其次降低旋转树的高度

旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。

4.2右单旋

• 本图1展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/图5进行了详细描述。

• 在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从-1变成-2,10为根的树左右高度差超过1,违反平衡规则。10为根的树左边太高了,需要往右边旋转,控制两棵树的平衡。

旋转核心步骤,因为5 < b子树的值 < 10,将b变成10的左子树,10变成5的右子树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。

实际上,我们只需关注parent,subL,subLR这三个节点,因为只有这三个节点发生了变化,具体操作是:

将subLR变成parent的左子树,parent变成subL的右子树,subL变成这棵树新的根

事实上,我们并不需要关注右单旋的形态有多少种,具体又是什么类型,我们只需要关注抽象概括的a/b/c高度为h的子树就行了,因为他们的操作是一样的,与a,b,c高度是多少并无关联

右旋后只有subL和parent的平衡因子发生了变化,且都变为了0

右单旋代码实现:

void RotateR(Node* parent)
{
	//将subLR变成parent的左子树,parent变成subL的右子树,subL变成这棵树新的根
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	//将subLR变成parent的左子树
	parent->_left = subLR;
	// 需要注意除了要修改孩子指针,还要修改父亲指针
	//若subLR不为空,则更新subLR父亲指针,防止出现空指针的解引用
	if (subLR)
		subLR->_parent = parent;

	//parent变成subL的右子树,subL变成这棵树新的根
	Node* parentParent = parent->_parent;
	subL->_right = parent;
	parent->_parent = subL;
	// parent有可能是整棵树的根,也可能是局部的子树
	// 如果是整棵树的根,要修改_root
	// 如果是局部的指针要跟上一层链接
	if (parentParent == nullptr)
	{
		_root = subL;
		subL->_parent = nullptr;
	}
	else
	{
		if (parent == parentParent->_left)
		{
			parentParent->_left = subL;
		}
		else
		{
			parentParent->_right = subL;
		}
		subL->_parent = parentParent;
	}
	//右旋后只有subL和parent的平衡因子发生了变化,且都变为了0
	parent->_bf = subL->_bf = 0;
}

4.3左单旋

• 本图6展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,是一种概括抽象表示,他代表了所有左单旋的场景,实际左单旋形态有很多种,具体跟上面右旋类似。

• 在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从1变成2,10为根的树左右高度差超过1,违反平衡规则。10为根的树右边太高了,需要往左边旋转,控制两棵树的平衡。

• 旋转核心步骤,因为10 < b子树的值 < 15,将b变成10的右子树,10变成15的左子树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。

实际上,我们只需关注parent,subL,subLR这三个节点,因为只有这三个节点发生了变化,具体操作是:

将subRL变成parent的右子树,parent变成subR的左子树,subR变成这棵树新的根

左旋后只有subR和parent的平衡因子发生了变化,且都变为了0

左单旋代码实现:

void RotateL(Node* parent)
{
	//将subRL变成parent的右子树,parent变成subR的左子树,subR变成这棵树新的根
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	//将subRL变成parent的右子树
	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;
	Node* parentParent = parent->_parent;
	//parent变成subR的左子树,subR变成这棵树新的根
	subR->_left = parent;
	parent->_parent = subR;
	if (parentParent == nullptr)
	{
		_root = subR;
		subR->_parent = nullptr;
	}
	else
	{
		if (parent == parentParent->_left)
		{
			parentParent->_left = subR;
		}
		else
		{
			parentParent->_right = subR;
		}
		subR->_parent = parentParent;
	}
	parent->_bf = subR->_bf = 0;
}

4.4左右双旋

通过图7和图8可以看到,左边高时,如果插入位置不是在a子树,而是插入在b子树,b子树高度从h变成h+1,引发旋转,右单旋无法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边高,但是插入在b子树中,10为跟的子树不再是单纯的左边高,对于10是左边高,但是对于5是右边高,需要用两次旋转才能解决,以5为旋转点进行一个左单旋,以10为旋转点进行一个右单旋,这棵树这棵树就平衡了。

实际上就是进行两次旋转,以subL为旋转点进行一个左单旋,以parent为旋转点进行一个右单旋

• 图7和图8分别为左右双旋中h0和h1具体场景分析,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进一步展开为8和左右子树高度为h-1的e和f子树,因为我们要对b的父亲5为旋转点进行左单旋左单旋需要动b树中的左子树b子树中新增结点的位置不同,平衡因子更新的细节也不同通过观察8的平衡因子不同,这里我们要分三个场景讨论。

• 场景1:h >= 1时,新增结点插入在e子树,e子树高度从h-1变为h并不断更新8->5->10的平衡因子,引发旋转,其中subLR的平衡因子为-1旋转后subLR和subL平衡因子为0,parent平衡因子为1

• 场景2:h >= 1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新8->5->10平衡因子,引发旋转,其中subLR的平衡因子为1旋转后subLR和parent平衡因子为0,subL平衡因子为-1。

• 场景3:h == 0时,a/b/c都是空树,b自己就是一个新增结点,不断更新5->10平衡因子,引发旋转,其中subLR的平衡因子为0旋转后subLR和parent和subL平衡因子均为0

左右双旋代码实现:

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;
	//以subL为旋转点进行一个左单旋,以parent为旋转点进行一个右单旋
	RotateL(parent->_left);
	RotateR(parent);
	
	if (bf == 0)
	{
		//subLR的平衡因子为0,旋转后subLR和parent和subL平衡因子均为0。
		subL->_bf = 0;
		subLR->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == -1)
	{
		//subLR的平衡因子为-1,旋转后subLR和subL平衡因子为0,parent平衡因子为1。
		subL->_bf = 0;
		subLR->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 1)
	{
		//subLR的平衡因子为1,旋转后subLR和parent平衡因子为0,subL平衡因子为-1
		subL->_bf = -1;
		subLR->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

4.5右左双旋

• 跟左右双旋类似,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进一步展开为12和左右子树高度为h-1的e和f子树,因为我们要对b的父亲15为旋转点进行右单旋,右单旋需要动b树中的右子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察12的平衡因子不同,这里我们要分三个场景讨论。

• 场景1:h >= 1时,新增结点插入在e子树,e子树高度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中subRL的平衡因子为-1,旋转后parent和subRL平衡因子为0,subR平衡因子为1

• 场景2:h >= 1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中subRL的平衡因子为1,旋转后subR和subRL平衡因子为0,parent平衡因子为-1

• 场景3:h == 0时,a/b/c都是空树,b自己就是一个新增结点,不断更新15->10平衡因子,引发旋转,其中

subRL的平衡因子为0,旋转后parent和subRL和subR平衡因子均为0

实际上就是进行两次旋转,以subR为旋转点进行一个右单旋,以parent为旋转点进行一个左单旋

右左双旋代码实现:

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;
	//以subR为旋转点进行一个右单旋,以parent为旋转点进行一个左单旋
	RotateR(parent->_right);
	RotateL(parent);
	if (bf == 0)
	{
		//subRL的平衡因子为0,旋转后parent和subRL和subR平衡因子均为0
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == 1)
	{
		//subRL的平衡因子为1,旋转后subR和subRL平衡因子为0,parent平衡因子为-1。
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = -1;
	}
	else if (bf == -1)
	{
		//subRL的平衡因子为-1,旋转后parent和subRL平衡因子为0,subR平衡因子为1
		subR->_bf = 1;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

5.AVL树的查找

用二叉搜索树逻辑实现即可,搜索效率为 O(logN)

Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_k < key)
		{
			cur = cur->_right;
		}
		else if (cur->_k > key)
		{
			cur = cur->_left;
		}
		else
		{
			return cur;
		}
	}
	return nullptr;
}

6.AVL树平衡检测

我们实现的AVL树是否合格,通过检查左右子树高度差的的程序进行反向验证,同时检查一下结点的平衡因子更新是否出现了问题

int _Height(Node* root)
{
	if (root == nullptr)
		return 0;
	int leftHeight = _Height(root->_left);
	int rightHeight = _Height(root->_right);
	return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{
	// 空树也是AVL树
	if (nullptr == root)
		return true;
	// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差
	int leftHeight = _Height(root->_left);
	int rightHeight = _Height(root->_right);
	int diff = rightHeight - leftHeight;
	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 pRoot平衡因子的绝对值超过1,则一定不是AVL树
	if (abs(diff) >= 2)
	{
		cout << root->_k << "高度差异常" << endl;
		return false;
	}
	if (root->_bf != diff)
	{
		cout << root->_k << "平衡因子异常" << endl;
		return false;
	}
	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
	return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}

7.完整代码运行测试

#include<vector>
#include<iostream>
#include<assert.h>
using namespace std;
template<class K>
struct AVLTreeNode
{
	//存储的值
	K _k;
	AVLTreeNode<K>* _left;
	AVLTreeNode<K>* _right;
	// 需要parent指针,后续更新平衡因子可以用到
	AVLTreeNode<K>* _parent;
	// 平衡因子
	int _bf; 
	AVLTreeNode(const K& k)
		:_k(k)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};
template<class K>
class AVLTree
{
	typedef AVLTreeNode<K> Node;
public:
	void RotateR(Node* parent)
	{
		//将subLR变成parent的左子树,parent变成subL的右子树,subL变成这棵树新的根
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		//将subLR变成parent的左子树
		parent->_left = subLR;
		// 需要注意除了要修改孩子指针,还要修改父亲指针
		//若subLR不为空,则更新subLR父亲指针,防止出现空指针的解引用
		if (subLR)
			subLR->_parent = parent;

		//parent变成subL的右子树,subL变成这棵树新的根
		Node* parentParent = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		// parent有可能是整棵树的根,也可能是局部的子树
		// 如果是整棵树的根,要修改_root
		// 如果是局部的指针要跟上一层链接
		if (parentParent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
		//右旋后只有subL和parent的平衡因子发生了变化,且都变为了0
		parent->_bf = subL->_bf = 0;
	}
	void RotateL(Node* parent)
	{
		//将subRL变成parent的右子树,parent变成subR的左子树,subR变成这棵树新的根
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		//将subRL变成parent的右子树
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* parentParent = parent->_parent;
		//parent变成subR的左子树,subR变成这棵树新的根
		subR->_left = parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
		parent->_bf = subR->_bf = 0;
	}
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
		//以subL为旋转点进行一个左单旋,以parent为旋转点进行一个右单旋
		RotateL(parent->_left);
		RotateR(parent);
		
		if (bf == 0)
		{
			//subLR的平衡因子为0,旋转后subLR和parent和subL平衡因子均为0。
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			//subLR的平衡因子为-1,旋转后subLR和subL平衡因子为0,parent平衡因子为1。
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			//subLR的平衡因子为1,旋转后subLR和parent平衡因子为0,subL平衡因子为-1
			subL->_bf = -1;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
		//以subR为旋转点进行一个右单旋,以parent为旋转点进行一个左单旋
		RotateR(parent->_right);
		RotateL(parent);
		if (bf == 0)
		{
			//subRL的平衡因子为0,旋转后parent和subRL和subR平衡因子均为0
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			//subRL的平衡因子为1,旋转后subR和subRL平衡因子为0,parent平衡因子为-1。
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			//subRL的平衡因子为-1,旋转后parent和subRL平衡因子为0,subR平衡因子为1
			subR->_bf = 1;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	bool Insert(const K& k)
	{
		if (_root == nullptr)
		{
			_root = new Node(k);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		//查找插入位置
		while (cur)
		{
			if (cur->_k < k)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_k > k)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		//插入节点
		cur = new Node(k);
		if (parent->_k < k)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		// 更新平衡因子
		while (parent)
		{
			// 更新平衡因子
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;
			//判断更新的情况
			if (parent->_bf == 0)
			{
				// 更新结束
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				
				// 旋转
				if (parent->_bf == -2 && cur->_bf == -1) // 右单旋
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1) // 右左双旋
				{
					RotateRL(parent);
				}
				//旋转后AVL树恢复平衡,结束循环
				break;
			}
			else
			{
				assert(false);
			}
		}
		return true;
	}
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_k < key)
			{
				cur = cur->_right;
			}
			else if (cur->_k > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return nullptr;
	}
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}
	int Height()
	{
		return _Height(_root);
	}
	bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root)
			return true;
		// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;
		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (abs(diff) >= 2)
		{
			cout << root->_k << "高度差异常" << endl;
			return false;
		}
		if (root->_bf != diff)
		{
			cout << root->_k << "平衡因子异常" << endl;
			return false;
		}
		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}
	bool IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_k << " ";
		_InOrder(root->_right);
	}
void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
private:
	Node* _root = nullptr;
};

// 测试代码
void TestAVLTree1()
{
	AVLTree<int> t;
	// 常规的测试用例
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	// 特殊的带有双旋场景的测试用例
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	for (auto e : a)
	{
		t.Insert(e);
	}
	t.InOrder();
	cout << t.IsBalanceTree() << endl;
}
// 插入一堆随机值,测试平衡,顺便测试一下高度和性能等
void TestAVLTree2()
{
	const int N = 100000;
	vector<int> v;
	v.reserve(N);
	srand(time(0));
	for (size_t i = 0; i < N; i++)
	{
		v.push_back(rand() + i);
	}
	size_t begin2 = clock();
	AVLTree<int> t;
	for (auto e : v)
	{
		t.Insert(e);
	}
	size_t end2 = clock();
	cout << "Insert:" << end2 - begin2 << endl;
	cout << t.IsBalanceTree() << endl;
	cout << "Height:" << t.Height() << endl;
	
	size_t begin1 = clock();
	// 随机值
	for (size_t i = 0; i < N; i++)
	{
		t.Find((rand() + i));
	}
	size_t end1 = clock();
	cout << "Find:" << end1 - begin1 << endl;
}
int main()
{
	TestAVLTree1();
	//TestAVLTree2();
	return 0;
}

到此,AVL树就讲完了,怎么样,是不是感觉大脑里面多了很多新知识。

如果觉得博主讲的还可以的话,就请大家多多支持博主,收藏加关注,追更不迷路

如果觉得博主哪里讲的不到位或是有疏漏,还请大家多多指出,博主一定会加以改正

博语小屋将持续为您推出文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值