Hello 大家好。上一次我们学习了二叉搜索树,知道了他的增删查改效率是O(logN)~O(N),当二叉搜索树退化到单支树时,他的增删查改效率就是O(N),这显然是二叉搜索树的一个明显缺陷。今天,我们来学习二叉搜索树的进阶,AVL树,也就是平衡二叉搜索树,它就完美解决了二叉搜索树可能退化到单支树的情况,确保它的增删查改效率始终是O(logN)。那么接下来就让我们进入到AVL树的学习中吧。
1. AVL的概念
• AVL树是最先发明的平衡二叉查找树,AVL是一颗空树,或者具备下列性质的二叉搜索树:
- 它的左右子树都是AVL树,且左右子树的高度差的绝对值不超过1。
- AVL树是一颗高度平衡搜索二叉树,通过控制高度差去控制平衡。
• AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis是两个前苏联的科学家,他们在1962年的论文《An algorithm for the organization of information》中发表了它。
• AVL树实现这里我们引入一个平衡因子(balance factor)的概念,每个结点都有一个平衡因子,任何结点的平衡因子等于右子树的高度减去左子树的高度(也可以是左子树的高度-右子树的高度,看自己选择),也就是说任何结点的平衡因子等于0/1/-1,AVL树并不是必须要平衡因子,但是有了平衡因子可以更方便我们去进行观察和控制树是否平衡,就像一个风向标一样。
• 思考一下为什么AVL树是高度平衡搜索二叉树,要求高度差不超过1,而不是高度差是0呢?0不是更好的平衡吗?画图分析我们发现,不是不想这样设计,而是有些情况是做不到高度差是0的。比如一棵树是2个结点,4个结点等情况下,高度差最好就是1,无法做到高度差是0
• AVL树整体结点数量和分布和完全二叉树类似,高度可以控制在logN ,那么增删查改的效率也可以控制在O(logN) ,相比二叉搜索树有了本质的提升。
下面给出一个AVL树的图例
2.AVL的基本框架
实际上,AVL树相较于二叉搜索树最大的区别就是可以控制高度,它们的基本框架大体相同
template<class K>
struct AVLTreeNode
{
//存储的值
K _k;
AVLTreeNode<K>* _left;
AVLTreeNode<K>* _right;
// 需要parent指针,后续更新平衡因子可以用到
AVLTreeNode<K>* _parent;
// 平衡因子
int _bf;
AVLTreeNode(const K& k)
:_k(k)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
{}
};
template<class K>
class AVLTree
{
typedef AVLTreeNode<K> Node;
public:
private:
Node* _root = nullptr;
};
3.AVL树的插入
相较于二叉搜索树,AVL树的插入要考虑更多因素,如平衡因子的更新以及AVL树的旋转,接下来,让我们由易入难,先习平衡因子的更新
3.1 平衡因子的更新
更新原则:
• 平衡因子 = 右子树高度-左子树高度
• 只有子树高度变化才会影响当前结点平衡因子。
• 插入结点,会增加高度,所以新增结点在parent的右子树,parent的平衡因子++,新增结点在parent的左子树,parent平衡因子–
• parent所在子树的高度是否变化决定了是否会继续往上更新
更新的几种情况:
• 更新后parent的平衡因子等于0,更新中parent的平衡因子变化为-1->0 或者 1->0,说明更新前parent子树一边高一边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变,不会影响parent的父亲结点的平衡因子,更新结束。
• 更新后parent的平衡因子等于1 或 -1,更新中parent的平衡因子变化为0->1 或者 0->-1,说明更新前parent子树两边一样高,新增的插入结点后,parent所在的子树一边高一边低,parent所在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向上更新,最坏更新到根停止
• 更新后parent的平衡因子等于2 或 -2,更新中parent的平衡因子变化为1->2 或者 -1->-2,说明更新前parent子树一边高一边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理,旋转的目标有两个:
- 把parent子树旋转平衡。
- 降低parent子树的高度,恢复到插入结点以前的高度。所以旋转后也不需要继续往上更新,插入结束。
• 不断更新,更新到根,根的平衡因子是1或-1也停止了。
让我们来举例说明:
1.更新后parent的平衡因子等于0
2.更新后parent的平衡因子等于1 或 -1
更新到中间结点,3为根的子树高度不变,不会影响上一层,更新结束
更新后parent的平衡因子等于2 或 -2,需要旋转处理
3.2插入结点及更新平衡因子的初步代码实现
bool Insert(const K& k)
{
if (_root == nullptr)
{
_root = new Node(k);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
//查找插入位置
while (cur)
{
if (cur->_k < k)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_k > k)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入节点
cur = new Node(k);
if (parent->_k < k)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
// 更新平衡因子
while (parent)
{
// 更新平衡因子
if (cur == parent->_left)
parent->_bf--;
else
parent->_bf++;
//判断更新的情况
if (parent->_bf == 0)
{
// 更新结束
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
// 继续往上更新
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
// 不平衡了,旋转处理
...
}
else
{
assert(false);
}
}
return true;
}
4. 旋转
4.1旋转的原则
-
保持搜索树的规则
-
让旋转的树从不满足平衡变平衡,其次降低旋转树的高度
旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。
4.2右单旋
• 本图1展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/图5进行了详细描述。
• 在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从-1变成-2,10为根的树左右高度差超过1,违反平衡规则。10为根的树左边太高了,需要往右边旋转,控制两棵树的平衡。
• 旋转核心步骤,因为5 < b子树的值 < 10,将b变成10的左子树,10变成5的右子树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。
实际上,我们只需关注parent,subL,subLR这三个节点,因为只有这三个节点发生了变化,具体操作是:
将subLR变成parent的左子树,parent变成subL的右子树,subL变成这棵树新的根
事实上,我们并不需要关注右单旋的形态有多少种,具体又是什么类型,我们只需要关注抽象概括的a/b/c高度为h的子树就行了,因为他们的操作是一样的,与a,b,c高度是多少并无关联
右旋后只有subL和parent的平衡因子发生了变化,且都变为了0
右单旋代码实现:
void RotateR(Node* parent)
{
//将subLR变成parent的左子树,parent变成subL的右子树,subL变成这棵树新的根
Node* subL = parent->_left;
Node* subLR = subL->_right;
//将subLR变成parent的左子树
parent->_left = subLR;
// 需要注意除了要修改孩子指针,还要修改父亲指针
//若subLR不为空,则更新subLR父亲指针,防止出现空指针的解引用
if (subLR)
subLR->_parent = parent;
//parent变成subL的右子树,subL变成这棵树新的根
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
// parent有可能是整棵树的根,也可能是局部的子树
// 如果是整棵树的根,要修改_root
// 如果是局部的指针要跟上一层链接
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
//右旋后只有subL和parent的平衡因子发生了变化,且都变为了0
parent->_bf = subL->_bf = 0;
}
4.3左单旋
• 本图6展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,是一种概括抽象表示,他代表了所有左单旋的场景,实际左单旋形态有很多种,具体跟上面右旋类似。
• 在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从1变成2,10为根的树左右高度差超过1,违反平衡规则。10为根的树右边太高了,需要往左边旋转,控制两棵树的平衡。
• 旋转核心步骤,因为10 < b子树的值 < 15,将b变成10的右子树,10变成15的左子树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。
实际上,我们只需关注parent,subL,subLR这三个节点,因为只有这三个节点发生了变化,具体操作是:
将subRL变成parent的右子树,parent变成subR的左子树,subR变成这棵树新的根
左旋后只有subR和parent的平衡因子发生了变化,且都变为了0
左单旋代码实现:
void RotateL(Node* parent)
{
//将subRL变成parent的右子树,parent变成subR的左子树,subR变成这棵树新的根
Node* subR = parent->_right;
Node* subRL = subR->_left;
//将subRL变成parent的右子树
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
//parent变成subR的左子树,subR变成这棵树新的根
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
parent->_bf = subR->_bf = 0;
}
4.4左右双旋
通过图7和图8可以看到,左边高时,如果插入位置不是在a子树,而是插入在b子树,b子树高度从h变成h+1,引发旋转,右单旋无法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边高,但是插入在b子树中,10为跟的子树不再是单纯的左边高,对于10是左边高,但是对于5是右边高,需要用两次旋转才能解决,以5为旋转点进行一个左单旋,以10为旋转点进行一个右单旋,这棵树这棵树就平衡了。
实际上就是进行两次旋转,以subL为旋转点进行一个左单旋,以parent为旋转点进行一个右单旋
• 图7和图8分别为左右双旋中h0和h1具体场景分析,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进一步展开为8和左右子树高度为h-1的e和f子树,因为我们要对b的父亲5为旋转点进行左单旋,左单旋需要动b树中的左子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察8的平衡因子不同,这里我们要分三个场景讨论。
• 场景1:h >= 1时,新增结点插入在e子树,e子树高度从h-1变为h并不断更新8->5->10的平衡因子,引发旋转,其中subLR的平衡因子为-1,旋转后subLR和subL平衡因子为0,parent平衡因子为1。
• 场景2:h >= 1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新8->5->10平衡因子,引发旋转,其中subLR的平衡因子为1,旋转后subLR和parent平衡因子为0,subL平衡因子为-1。
• 场景3:h == 0时,a/b/c都是空树,b自己就是一个新增结点,不断更新5->10平衡因子,引发旋转,其中subLR的平衡因子为0,旋转后subLR和parent和subL平衡因子均为0。
左右双旋代码实现:
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
//以subL为旋转点进行一个左单旋,以parent为旋转点进行一个右单旋
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)
{
//subLR的平衡因子为0,旋转后subLR和parent和subL平衡因子均为0。
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 0;
}
else if (bf == -1)
{
//subLR的平衡因子为-1,旋转后subLR和subL平衡因子为0,parent平衡因子为1。
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 1;
}
else if (bf == 1)
{
//subLR的平衡因子为1,旋转后subLR和parent平衡因子为0,subL平衡因子为-1
subL->_bf = -1;
subLR->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
4.5右左双旋
• 跟左右双旋类似,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进一步展开为12和左右子树高度为h-1的e和f子树,因为我们要对b的父亲15为旋转点进行右单旋,右单旋需要动b树中的右子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察12的平衡因子不同,这里我们要分三个场景讨论。
• 场景1:h >= 1时,新增结点插入在e子树,e子树高度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中subRL的平衡因子为-1,旋转后parent和subRL平衡因子为0,subR平衡因子为1。
• 场景2:h >= 1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中subRL的平衡因子为1,旋转后subR和subRL平衡因子为0,parent平衡因子为-1。
• 场景3:h == 0时,a/b/c都是空树,b自己就是一个新增结点,不断更新15->10平衡因子,引发旋转,其中
subRL的平衡因子为0,旋转后parent和subRL和subR平衡因子均为0。
实际上就是进行两次旋转,以subR为旋转点进行一个右单旋,以parent为旋转点进行一个左单旋
右左双旋代码实现:
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
//以subR为旋转点进行一个右单旋,以parent为旋转点进行一个左单旋
RotateR(parent->_right);
RotateL(parent);
if (bf == 0)
{
//subRL的平衡因子为0,旋转后parent和subRL和subR平衡因子均为0
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = 0;
}
else if (bf == 1)
{
//subRL的平衡因子为1,旋转后subR和subRL平衡因子为0,parent平衡因子为-1。
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
//subRL的平衡因子为-1,旋转后parent和subRL平衡因子为0,subR平衡因子为1
subR->_bf = 1;
subRL->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
5.AVL树的查找
用二叉搜索树逻辑实现即可,搜索效率为 O(logN)
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_k < key)
{
cur = cur->_right;
}
else if (cur->_k > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
6.AVL树平衡检测
我们实现的AVL树是否合格,通过检查左右子树高度差的的程序进行反向验证,同时检查一下结点的平衡因子更新是否出现了问题
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{
// 空树也是AVL树
if (nullptr == root)
return true;
// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (abs(diff) >= 2)
{
cout << root->_k << "高度差异常" << endl;
return false;
}
if (root->_bf != diff)
{
cout << root->_k << "平衡因子异常" << endl;
return false;
}
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
7.完整代码运行测试
#include<vector>
#include<iostream>
#include<assert.h>
using namespace std;
template<class K>
struct AVLTreeNode
{
//存储的值
K _k;
AVLTreeNode<K>* _left;
AVLTreeNode<K>* _right;
// 需要parent指针,后续更新平衡因子可以用到
AVLTreeNode<K>* _parent;
// 平衡因子
int _bf;
AVLTreeNode(const K& k)
:_k(k)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
{}
};
template<class K>
class AVLTree
{
typedef AVLTreeNode<K> Node;
public:
void RotateR(Node* parent)
{
//将subLR变成parent的左子树,parent变成subL的右子树,subL变成这棵树新的根
Node* subL = parent->_left;
Node* subLR = subL->_right;
//将subLR变成parent的左子树
parent->_left = subLR;
// 需要注意除了要修改孩子指针,还要修改父亲指针
//若subLR不为空,则更新subLR父亲指针,防止出现空指针的解引用
if (subLR)
subLR->_parent = parent;
//parent变成subL的右子树,subL变成这棵树新的根
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
// parent有可能是整棵树的根,也可能是局部的子树
// 如果是整棵树的根,要修改_root
// 如果是局部的指针要跟上一层链接
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
//右旋后只有subL和parent的平衡因子发生了变化,且都变为了0
parent->_bf = subL->_bf = 0;
}
void RotateL(Node* parent)
{
//将subRL变成parent的右子树,parent变成subR的左子树,subR变成这棵树新的根
Node* subR = parent->_right;
Node* subRL = subR->_left;
//将subRL变成parent的右子树
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
//parent变成subR的左子树,subR变成这棵树新的根
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
parent->_bf = subR->_bf = 0;
}
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
//以subL为旋转点进行一个左单旋,以parent为旋转点进行一个右单旋
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)
{
//subLR的平衡因子为0,旋转后subLR和parent和subL平衡因子均为0。
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 0;
}
else if (bf == -1)
{
//subLR的平衡因子为-1,旋转后subLR和subL平衡因子为0,parent平衡因子为1。
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 1;
}
else if (bf == 1)
{
//subLR的平衡因子为1,旋转后subLR和parent平衡因子为0,subL平衡因子为-1
subL->_bf = -1;
subLR->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
//以subR为旋转点进行一个右单旋,以parent为旋转点进行一个左单旋
RotateR(parent->_right);
RotateL(parent);
if (bf == 0)
{
//subRL的平衡因子为0,旋转后parent和subRL和subR平衡因子均为0
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = 0;
}
else if (bf == 1)
{
//subRL的平衡因子为1,旋转后subR和subRL平衡因子为0,parent平衡因子为-1。
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
//subRL的平衡因子为-1,旋转后parent和subRL平衡因子为0,subR平衡因子为1
subR->_bf = 1;
subRL->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
bool Insert(const K& k)
{
if (_root == nullptr)
{
_root = new Node(k);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
//查找插入位置
while (cur)
{
if (cur->_k < k)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_k > k)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入节点
cur = new Node(k);
if (parent->_k < k)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
// 更新平衡因子
while (parent)
{
// 更新平衡因子
if (cur == parent->_left)
parent->_bf--;
else
parent->_bf++;
//判断更新的情况
if (parent->_bf == 0)
{
// 更新结束
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
// 继续往上更新
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
// 旋转
if (parent->_bf == -2 && cur->_bf == -1) // 右单旋
{
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋
{
RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1) // 右左双旋
{
RotateRL(parent);
}
//旋转后AVL树恢复平衡,结束循环
break;
}
else
{
assert(false);
}
}
return true;
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_k < key)
{
cur = cur->_right;
}
else if (cur->_k > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
int Height()
{
return _Height(_root);
}
bool _IsBalanceTree(Node* root)
{
// 空树也是AVL树
if (nullptr == root)
return true;
// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (abs(diff) >= 2)
{
cout << root->_k << "高度差异常" << endl;
return false;
}
if (root->_bf != diff)
{
cout << root->_k << "平衡因子异常" << endl;
return false;
}
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
bool IsBalanceTree()
{
return _IsBalanceTree(_root);
}
void _InOrder(Node* root)
{
if (root == nullptr)
return;
_InOrder(root->_left);
cout << root->_k << " ";
_InOrder(root->_right);
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
private:
Node* _root = nullptr;
};
// 测试代码
void TestAVLTree1()
{
AVLTree<int> t;
// 常规的测试用例
//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
// 特殊的带有双旋场景的测试用例
int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
for (auto e : a)
{
t.Insert(e);
}
t.InOrder();
cout << t.IsBalanceTree() << endl;
}
// 插入一堆随机值,测试平衡,顺便测试一下高度和性能等
void TestAVLTree2()
{
const int N = 100000;
vector<int> v;
v.reserve(N);
srand(time(0));
for (size_t i = 0; i < N; i++)
{
v.push_back(rand() + i);
}
size_t begin2 = clock();
AVLTree<int> t;
for (auto e : v)
{
t.Insert(e);
}
size_t end2 = clock();
cout << "Insert:" << end2 - begin2 << endl;
cout << t.IsBalanceTree() << endl;
cout << "Height:" << t.Height() << endl;
size_t begin1 = clock();
// 随机值
for (size_t i = 0; i < N; i++)
{
t.Find((rand() + i));
}
size_t end1 = clock();
cout << "Find:" << end1 - begin1 << endl;
}
int main()
{
TestAVLTree1();
//TestAVLTree2();
return 0;
}
到此,AVL树就讲完了,怎么样,是不是感觉大脑里面多了很多新知识。
如果觉得博主讲的还可以的话,就请大家多多支持博主,收藏加关注,追更不迷路
如果觉得博主哪里讲的不到位或是有疏漏,还请大家多多指出,博主一定会加以改正
博语小屋将持续为您推出文章