图文并茂笔记引擎:结构化插图生成 + 图片标注 + AI图示辅助表达机制 HarmonyOS 5.0.0 或以上

系列:AI驱动的学习型笔记系统(14/60)
阅读目标:实现一个支持图文融合的笔记引擎,能自动插入 AI 生成的解释性图示、用户上传图的智能标注、并实现图→文→题一体化输出。


🎯 一、系统能力设计目标

学习需求系统实现机制
概念抽象,单纯文字难理解自动生成流程图/结构图/示意图/坐标图等插图
插入的图太“死板”,无法解释支持图中添加标注 + AI文字讲解图意
图与文脱节,逻辑顺序不好图文结构融合,支持“先图后文”“图内嵌讲解”“图+题组合”

🧱 二、插图结构与标注数据设计

interface Illustration {
  id: string
  type: '流程图' | '结构图' | '示意图' | '曲线图'
  imageUrl: string
  altText: string
  generatedFromBlockId?: string
  annotations?: IllustrationNote[]
}

interface IllustrationNote {
  point: [number, number]
  label: string
  explanation?: string
}

📌 支持图中锚点标注、气泡解释、多语言图注。


✨ 三、AI 结构化插图生成流程

输入:笔记段落或知识点 → 输出:可理解图像(PNG/SVG)

示例 prompt:

请根据以下内容生成一张示意图,用于帮助学生理解该原理。

段落:
“牛顿第二定律指出,加速度与合外力成正比,与质量成反比。”

要求:
- 展示三个箭头:力、质量、加速度
- 图中用 F=ma 表达关系
- 保持结构简洁、教学风格

调用流程:

function generateIllustration(blockContent: string): Illustration {
  const prompt = buildDiagramPrompt(blockContent)
  const image = callAIDraw(prompt)
  return {
    id: genId(),
    type: '示意图',
    imageUrl: image.url,
    altText: prompt,
    generatedFromBlockId: getCurrentBlockId()
  }
}

🧠 四、用户上传图的智能标注功能

上传后自动识别图中结构 + 可添加标注锚点

function annotateImage(imageFile): IllustrationNote[] {
  const detectedPoints = callVisionModel(imageFile)
  return detectedPoints.map(p => ({
    point: p.coords,
    label: p.label,
    explanation: callAI(`请解释图中“${p.label}”表示什么`)
  }))
}

📌 实现“图中每个关键点都有讲解” → 鼠标悬停即显解释


🔗 五、图文融合渲染设计建议

展示结构推荐方式
图 → 文结构上方插图,下方解释该图内容
文中嵌图在段落中间插入图,并与上下文融合
图 + 题联动图下方自动生成 1~2 道理解题(配合第7篇测验系统)
图组模式若同一主题生成多张图,则可使用左右滑动卡片方式展示

📋 六、AI图转问机制(图→题)

例如:

输入图为“光的折射路径图”
输出:

  • 单选:图中光线由空气进入水时会发生什么变化?

  • 判断:图示中光线始终保持方向不变(√ / ×)

function generateQuizFromIllustration(illustration: Illustration): QuizItem[] {
  return callAI(`
请基于以下图像内容生成 1~2 道测验题,题目需可由图本身推理出答案。
图内容:${illustration.altText}
`)
}

📦 七、图管理与导出支持

功能说明
插图管理器显示所有生成 / 上传图,支持分类、排序、搜索
图→讲义集成插图自动同步至讲义系统(见第8篇),用于 PDF/Word 导出
图→视频生成图文融合后自动生成讲解脚本 + 音频(见第35篇)

✅ 八、小结

模块能力实现说明
AI图示生成能力自动从段落内容生成结构图、示意图等,辅以简洁教学风格图像
插图智能标注与解释支持识别图中结构 + 添加解释锚点,实现“图可交互”与“图中解释”
图文融合与渲染结构设计多种图文嵌入方式,适配学习逻辑;支持“图+题”、“图+讲义”等融合方案
图向题转化机制自动从图生成理解类题目,延伸为测验练习路径

📘 下一篇预告

第15篇|知识记忆追踪面板:已掌握/未掌握统计 + 弱项区域聚合 + 可视化学习进度仪表盘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值