系列:AI驱动的学习型笔记系统(14/60)
阅读目标:实现一个支持图文融合的笔记引擎,能自动插入 AI 生成的解释性图示、用户上传图的智能标注、并实现图→文→题一体化输出。
🎯 一、系统能力设计目标
学习需求 | 系统实现机制 |
---|---|
概念抽象,单纯文字难理解 | 自动生成流程图/结构图/示意图/坐标图等插图 |
插入的图太“死板”,无法解释 | 支持图中添加标注 + AI文字讲解图意 |
图与文脱节,逻辑顺序不好 | 图文结构融合,支持“先图后文”“图内嵌讲解”“图+题组合” |
🧱 二、插图结构与标注数据设计
interface Illustration {
id: string
type: '流程图' | '结构图' | '示意图' | '曲线图'
imageUrl: string
altText: string
generatedFromBlockId?: string
annotations?: IllustrationNote[]
}
interface IllustrationNote {
point: [number, number]
label: string
explanation?: string
}
📌 支持图中锚点标注、气泡解释、多语言图注。
✨ 三、AI 结构化插图生成流程
输入:笔记段落或知识点 → 输出:可理解图像(PNG/SVG)
示例 prompt:
请根据以下内容生成一张示意图,用于帮助学生理解该原理。
段落:
“牛顿第二定律指出,加速度与合外力成正比,与质量成反比。”
要求:
- 展示三个箭头:力、质量、加速度
- 图中用 F=ma 表达关系
- 保持结构简洁、教学风格
调用流程:
function generateIllustration(blockContent: string): Illustration {
const prompt = buildDiagramPrompt(blockContent)
const image = callAIDraw(prompt)
return {
id: genId(),
type: '示意图',
imageUrl: image.url,
altText: prompt,
generatedFromBlockId: getCurrentBlockId()
}
}
🧠 四、用户上传图的智能标注功能
上传后自动识别图中结构 + 可添加标注锚点
function annotateImage(imageFile): IllustrationNote[] {
const detectedPoints = callVisionModel(imageFile)
return detectedPoints.map(p => ({
point: p.coords,
label: p.label,
explanation: callAI(`请解释图中“${p.label}”表示什么`)
}))
}
📌 实现“图中每个关键点都有讲解” → 鼠标悬停即显解释
🔗 五、图文融合渲染设计建议
展示结构 | 推荐方式 |
---|---|
图 → 文结构 | 上方插图,下方解释该图内容 |
文中嵌图 | 在段落中间插入图,并与上下文融合 |
图 + 题联动 | 图下方自动生成 1~2 道理解题(配合第7篇测验系统) |
图组模式 | 若同一主题生成多张图,则可使用左右滑动卡片方式展示 |
📋 六、AI图转问机制(图→题)
例如:
输入图为“光的折射路径图”
输出:
-
单选:图中光线由空气进入水时会发生什么变化?
-
判断:图示中光线始终保持方向不变(√ / ×)
function generateQuizFromIllustration(illustration: Illustration): QuizItem[] {
return callAI(`
请基于以下图像内容生成 1~2 道测验题,题目需可由图本身推理出答案。
图内容:${illustration.altText}
`)
}
📦 七、图管理与导出支持
功能 | 说明 |
---|---|
插图管理器 | 显示所有生成 / 上传图,支持分类、排序、搜索 |
图→讲义集成 | 插图自动同步至讲义系统(见第8篇),用于 PDF/Word 导出 |
图→视频生成 | 图文融合后自动生成讲解脚本 + 音频(见第35篇) |
✅ 八、小结
模块能力 | 实现说明 |
---|---|
AI图示生成能力 | 自动从段落内容生成结构图、示意图等,辅以简洁教学风格图像 |
插图智能标注与解释 | 支持识别图中结构 + 添加解释锚点,实现“图可交互”与“图中解释” |
图文融合与渲染结构设计 | 多种图文嵌入方式,适配学习逻辑;支持“图+题”、“图+讲义”等融合方案 |
图向题转化机制 | 自动从图生成理解类题目,延伸为测验练习路径 |
📘 下一篇预告
第15篇|知识记忆追踪面板:已掌握/未掌握统计 + 弱项区域聚合 + 可视化学习进度仪表盘