💖💖作者:计算机毕业设计江挽
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
目录
基于大数据的小红书MCN机构数据可视化分析系统介绍
基于Hadoop+Spark的小红书MCN数据分析系统是一个针对MCN机构运营数据进行深度挖掘与可视化展示的大数据平台。系统采用Hadoop作为分布式存储基础,利用Spark强大的内存计算能力对海量小红书MCN机构数据进行快速处理与分析。前端采用Vue+ElementUI构建交互界面,通过Echarts实现多维度数据可视化展示。后端提供Django和Spring Boot两种技术栈实现方案,结合Spark SQL进行复杂数据查询与统计分析。系统核心功能涵盖内容领域分析、地理空间分布分析、机构运营效率分析和机构规模实力分析等六大模块,能够从不同维度对MCN机构的运营状况进行全面评估。通过Pandas和NumPy进行数据预处理,确保分析结果的准确性。整个系统架构清晰,技术栈完整,既体现了大数据处理的技术深度,又具备实际应用场景的业务价值,适合作为计算机专业大数据方向的毕业设计选题。
基于大数据的小红书MCN机构数据可视化分析系统演示视频
【数据分析】基于大数据的小红书MCN机构数据可视化分析系统 | 大数据毕设实战项目 大数据选题推荐 大数据可视化大屏 Hadoop SPark java
基于大数据的小红书MCN机构数据可视化分析系统演示图片
基于大数据的小红书MCN机构数据可视化分析系统代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, sum, desc, row_number, dense_rank
from pyspark.sql.window import Window
from django.http import JsonResponse
from django.views import View
import json
spark = SparkSession.builder.appName("XiaohongshuMCNAnalysis").config("spark.sql.warehouse.dir", "/user/hive/warehouse").config("spark.executor.memory", "2g").config("spark.driver.memory", "1g").getOrCreate()
class ContentFieldAnalysisView(View):
def post(self, request):
try:
params = json.loads(request.body)
start_date = params.get('start_date')
end_date = params.get('end_date')
mcn_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "mcn_content").option("user", "root").option("password", "123456").load()
filtered_df = mcn_df.filter((col("publish_date") >= start_date) & (col("publish_date") <= end_date))
field_stats = filtered_df.groupBy("content_field").agg(count("content_id").alias("content_count"),sum("likes_count").alias("total_likes"),sum("comments_count").alias("total_comments"),sum("shares_count").alias("total_shares"),avg("engagement_rate").alias("avg_engagement")).orderBy(desc("total_likes"))
field_distribution = filtered_df.groupBy("content_field").agg(count("*").alias("field_count"))
total_count = filtered_df.count()
field_distribution = field_distribution.withColumn("percentage", (col("field_count") / total_count * 100))
windowSpec = Window.partitionBy("content_field").orderBy(desc("likes_count"))
top_content = filtered_df.withColumn("rank", row_number().over(windowSpec)).filter(col("rank") <= 5).select("content_field", "content_title", "likes_count", "comments_count", "publish_date")
field_trend = filtered_df.groupBy("content_field", "publish_date").agg(count("content_id").alias("daily_count"),avg("engagement_rate").alias("daily_engagement")).orderBy("content_field", "publish_date")
cross_analysis = filtered_df.groupBy("content_field", "mcn_institution").agg(count("content_id").alias("institution_content_count"),avg("likes_count").alias("avg_likes")).orderBy("content_field", desc("institution_content_count"))
result_data = {"field_stats": [row.asDict() for row in field_stats.collect()],"field_distribution": [row.asDict() for row in field_distribution.collect()],"top_content": [row.asDict() for row in top_content.collect()],"field_trend": [row.asDict() for row in field_trend.collect()],"cross_analysis": [row.asDict() for row in cross_analysis.collect()]}
return JsonResponse({"code": 200, "message": "内容领域分析成功", "data": result_data})
except Exception as e:
return JsonResponse({"code": 500, "message": f"分析失败: {str(e)}"})
class GeographicDistributionAnalysisView(View):
def post(self, request):
try:
params = json.loads(request.body)
analysis_type = params.get('analysis_type', 'province')
time_range = params.get('time_range', 30)
location_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "mcn_geographic").option("user", "root").option("password", "123456").load()
if analysis_type == 'province':
geo_stats = location_df.groupBy("province").agg(count("user_id").alias("user_count"),sum("interaction_count").alias("total_interactions"),avg("avg_stay_time").alias("avg_duration"),sum("content_views").alias("total_views")).orderBy(desc("user_count"))
else:
geo_stats = location_df.groupBy("province", "city").agg(count("user_id").alias("user_count"),sum("interaction_count").alias("total_interactions"),avg("avg_stay_time").alias("avg_duration")).orderBy("province", desc("user_count"))
province_rank = location_df.groupBy("province").agg(sum("interaction_count").alias("interaction_sum")).withColumn("rank", dense_rank().over(Window.orderBy(desc("interaction_sum")))).filter(col("rank") <= 10)
content_preference = location_df.join(spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "mcn_content").option("user", "root").option("password", "123456").load(),location_df.user_id == col("author_id"), "inner").groupBy("province", "content_field").agg(count("content_id").alias("preference_count")).orderBy("province", desc("preference_count"))
windowPartition = Window.partitionBy("province").orderBy(desc("preference_count"))
top_preference = content_preference.withColumn("field_rank", row_number().over(windowPartition)).filter(col("field_rank") <= 3)
age_distribution = location_df.groupBy("province", "age_group").agg(count("user_id").alias("age_count")).orderBy("province", "age_group")
growth_trend = location_df.groupBy("province", "stat_date").agg(count("user_id").alias("daily_users"),sum("interaction_count").alias("daily_interactions")).orderBy("province", "stat_date")
heatmap_data = location_df.groupBy("province").agg(sum("interaction_count").alias("heat_value")).orderBy(desc("heat_value"))
result_data = {"geo_stats": [row.asDict() for row in geo_stats.collect()],"province_rank": [row.asDict() for row in province_rank.collect()],"top_preference": [row.asDict() for row in top_preference.collect()],"age_distribution": [row.asDict() for row in age_distribution.collect()],"growth_trend": [row.asDict() for row in growth_trend.collect()],"heatmap_data": [row.asDict() for row in heatmap_data.collect()]}
return JsonResponse({"code": 200, "message": "地理分布分析完成", "data": result_data})
except Exception as e:
return JsonResponse({"code": 500, "message": f"分析异常: {str(e)}"})
class InstitutionEfficiencyAnalysisView(View):
def post(self, request):
try:
params = json.loads(request.body)
institution_ids = params.get('institution_ids', [])
compare_mode = params.get('compare_mode', 'all')
efficiency_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "mcn_institution").option("user", "root").option("password", "123456").load()
if institution_ids:
efficiency_df = efficiency_df.filter(col("institution_id").isin(institution_ids))
content_efficiency = efficiency_df.groupBy("institution_id", "institution_name").agg((sum("total_likes") / count("content_count")).alias("avg_likes_per_content"),(sum("total_comments") / count("content_count")).alias("avg_comments_per_content"),(sum("total_shares") / count("content_count")).alias("avg_shares_per_content"),avg("content_quality_score").alias("avg_quality_score")).orderBy(desc("avg_likes_per_content"))
operation_efficiency = efficiency_df.groupBy("institution_id", "institution_name").agg((sum("fan_growth") / count("creator_count")).alias("fan_growth_per_creator"),(sum("content_count") / count("creator_count")).alias("content_per_creator"),avg("creator_activity_rate").alias("avg_activity_rate"),(sum("total_revenue") / sum("operation_cost")).alias("roi_ratio")).orderBy(desc("roi_ratio"))
time_efficiency = efficiency_df.join(spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "mcn_content").option("user", "root").option("password", "123456").load(),efficiency_df.institution_id == col("institution_id"), "inner").groupBy(efficiency_df.institution_id, efficiency_df.institution_name).agg(avg("response_time").alias("avg_response_time"),avg("content_production_cycle").alias("avg_production_cycle"),count("content_id").alias("monthly_output")).orderBy("avg_production_cycle")
comprehensive_score = efficiency_df.withColumn("efficiency_score",(col("fan_growth") * 0.3 + col("content_quality_score") * 0.25 + col("creator_activity_rate") * 0.2 + (col("total_revenue") / col("operation_cost")) * 0.25)).select("institution_id", "institution_name", "efficiency_score").orderBy(desc("efficiency_score"))
efficiency_rank = comprehensive_score.withColumn("rank", dense_rank().over(Window.orderBy(desc("efficiency_score"))))
trend_analysis = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "mcn_operation_log").option("user", "root").option("password", "123456").load().groupBy("institution_id", "stat_month").agg(avg("monthly_efficiency_score").alias("monthly_score")).orderBy("institution_id", "stat_month")
result_data = {"content_efficiency": [row.asDict() for row in content_efficiency.collect()],"operation_efficiency": [row.asDict() for row in operation_efficiency.collect()],"time_efficiency": [row.asDict() for row in time_efficiency.collect()],"efficiency_rank": [row.asDict() for row in efficiency_rank.collect()],"trend_analysis": [row.asDict() for row in trend_analysis.collect()]}
return JsonResponse({"code": 200, "message": "运营效率分析完成", "data": result_data})
except Exception as e:
return JsonResponse({"code": 500, "message": f"分析失败: {str(e)}"})
基于大数据的小红书MCN机构数据可视化分析系统文档展示
💖💖作者:计算机毕业设计江挽
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目