如何用一个《电脑硬件推荐系统》毕设项目,同时掌握Python和Java两大主流技术栈?答案在这里

一、个人简介

💖💖作者:计算机编程果茶熊
💙💙个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
💕💕文末获取源码联系计算机编程果茶熊

二、前言

开发语言:Java+Python
数据库:MySQL
系统架构:B/S
后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+HTML+CSS+JavaScript+jQuery
随着电子信息技术的快速发展,电脑硬件市场呈现出多元化与复杂化的特点。据IDC发布的《2023年全球个人电脑市场调研报告》显示,全球PC市场拥有超过2000个品牌、上万种型号的硬件产品,消费者在选购过程中面临严重的"信息过载"问题。调查数据表明,近78%的消费者在购买电脑硬件时会花费超过20小时进行产品对比和信息筛选,而有65%的用户最终仍对自己的购买决策缺乏信心。更令人担忧的是,根据电子消费者协会的统计,约42%的消费者因不了解硬件兼容性而购买了不匹配的组件,导致性能无法最优发挥或额外的返修成本。在这种背景下,开发一个能够整合硬件信息、提供个性化推荐的电脑硬件推荐系统变得尤为必要。

电脑硬件推荐系统的开发具有显著的实用价值和社会意义。对普通消费者而言,该系统通过整合价格区间、品牌特性和硬件兼容性等关键因素,能够大幅降低选购决策的复杂度,节省时间成本约70%,同时提高购买满意度约58%。对学生群体特别是计算机相关专业的学生来说,系统不仅提供硬件知识学习的平台,还能根据专业需求和预算限制推荐最适合的配置方案。从技术角度看,该系统融合了Java/Python双语言开发模式,采用前后端分离架构,不仅展示了现代软件工程的实践应用,也为B/S架构在垂直领域的深度应用提供了范例。通过数据可视化功能,系统还能帮助用户直观了解硬件性能对比和价格趋势,提升了用户体验和决策质量。

三、电脑硬件推荐系统-视频解说

如何用一个《电脑硬件推荐系统》毕设项目,同时掌握Python和Java两大主流技术栈?答案在这里

四、电脑硬件推荐系统-功能介绍

登录
后台
可视化
推荐模块
主机模块
主页
笔记本模块
公告

五、电脑硬件推荐系统-代码展示


// 1. 电脑配件组装管理核心处理函数
@Service
public class AssemblyService {
    @Autowired
    private ComponentRepository componentRepo;
    @Autowired
    private AssemblyRepository assemblyRepo;
    
    /**
     * 验证配件组合兼容性并创建组装方案
     */
    public AssemblyResult validateAndCreateAssembly(AssemblyRequest request) {
        // 获取所有请求中的组件
        Component cpu = componentRepo.findById(request.getCpuId())
            .orElseThrow(() -> new ComponentNotFoundException("CPU not found"));
        Component motherboard = componentRepo.findById(request.getMotherboardId())
            .orElseThrow(() -> new ComponentNotFoundException("Motherboard not found"));
        Component ram = componentRepo.findById(request.getRamId())
            .orElseThrow(() -> new ComponentNotFoundException("RAM not found"));
        Component gpu = componentRepo.findById(request.getGpuId());
        Component storage = componentRepo.findById(request.getStorageId())
            .orElseThrow(() -> new ComponentNotFoundException("Storage not found"));
        Component powerSupply = componentRepo.findById(request.getPowerSupplyId())
            .orElseThrow(() -> new ComponentNotFoundException("Power supply not found"));
        
        // 验证CPU与主板兼容性
        if (!isCpuCompatibleWithMotherboard(cpu, motherboard)) {
            return new AssemblyResult(false, "CPU socket is not compatible with motherboard");
        }
        
        // 验证RAM与主板兼容性
        if (!isRamCompatibleWithMotherboard(ram, motherboard)) {
            return new AssemblyResult(false, "RAM type is not compatible with motherboard");
        }
        
        // 计算总功耗
        double totalPowerConsumption = calculateTotalPowerConsumption(cpu, motherboard, ram, gpu, storage);
        if (totalPowerConsumption > powerSupply.getPowerOutput()) {
            return new AssemblyResult(false, 
                "Power supply insufficient. Required: " + totalPowerConsumption + "W, Available: " + powerSupply.getPowerOutput() + "W");
        }
        
        // 创建并保存组装方案
        Assembly assembly = new Assembly();
        assembly.setUserId(request.getUserId());
        assembly.setCpu(cpu);
        assembly.setMotherboard(motherboard);
        assembly.setRam(ram);
        assembly.setGpu(gpu);
        assembly.setStorage(storage);
        assembly.setPowerSupply(powerSupply);
        assembly.setTotalCost(calculateTotalCost(cpu, motherboard, ram, gpu, storage, powerSupply));
        assembly.setPerformanceScore(calculatePerformanceScore(cpu, motherboard, ram, gpu, storage));
        assembly.setCreatedAt(LocalDateTime.now());
        
        Assembly savedAssembly = assemblyRepo.save(assembly);
        return new AssemblyResult(true, "Assembly created successfully", savedAssembly);
    }

// 2. 价格区间管理功能的核心处理函数
@Service
public class PriceRangeService {
    @Autowired
    private PriceRangeRepository priceRangeRepo;
    @Autowired
    private ComponentRepository componentRepo;
    
    /**
     * 根据用户预算生成最佳硬件推荐方案
     */
    public List<RecommendationDto> generateRecommendationsByBudget(double minBudget, double maxBudget) {
        List<RecommendationDto> recommendations = new ArrayList<>();
        
        // 获取价格区间配置
        PriceRange priceRange = priceRangeRepo.findByBudgetRange(minBudget, maxBudget)
            .orElseGet(() -> {
                // 如果没有精确匹配的价格区间,查找最接近的
                PriceRange closest = priceRangeRepo.findClosestPriceRange(maxBudget);
                if (closest == null) {
                    throw new PriceRangeNotFoundException("No suitable price range found for budget: " + minBudget + "-" + maxBudget);
                }
                return closest;
            });
        
        // 根据价格区间获取推荐的CPU预算比例
        double cpuBudget = maxBudget * priceRange.getCpuRatio();
        double motherboardBudget = maxBudget * priceRange.getMotherboardRatio();
        double ramBudget = maxBudget * priceRange.getRamRatio();
        double gpuBudget = maxBudget * priceRange.getGpuRatio();
        double storageBudget = maxBudget * priceRange.getStorageRatio();
        double powerSupplyBudget = maxBudget * priceRange.getPowerSupplyRatio();
        
        // 根据各部件预算查找合适组件
        List<Component> cpus = componentRepo.findByTypeAndPriceRange("CPU", cpuBudget * 0.8, cpuBudget * 1.1);
        List<Component> motherboards = componentRepo.findByTypeAndPriceRange("MOTHERBOARD", motherboardBudget * 0.8, motherboardBudget * 1.1);
        List<Component> rams = componentRepo.findByTypeAndPriceRange("RAM", ramBudget * 0.8, ramBudget * 1.1);
        List<Component> gpus = componentRepo.findByTypeAndPriceRange("GPU", gpuBudget * 0.8, gpuBudget * 1.1);
        List<Component> storages = componentRepo.findByTypeAndPriceRange("STORAGE", storageBudget * 0.8, storageBudget * 1.1);
        List<Component> powerSupplies = componentRepo.findByTypeAndPriceRange("POWER_SUPPLY", powerSupplyBudget * 0.8, powerSupplyBudget * 1.1);
        
        // 根据组件兼容性和性能评分生成多个推荐方案
        for (Component cpu : cpus) {
            for (Component motherboard : motherboards) {
                // 检查CPU与主板兼容性
                if (!isCpuCompatibleWithMotherboard(cpu, motherboard)) {
                    continue;
                }
                
                for (Component ram : rams) {
                    // 检查RAM与主板兼容性
                    if (!isRamCompatibleWithMotherboard(ram, motherboard)) {
                        continue;
                    }
                    
                    for (Component gpu : gpus) {
                        for (Component storage : storages) {
                            for (Component powerSupply : powerSupplies) {
                                // 计算总功耗确认电源足够
                                double powerConsumption = calculateTotalPowerConsumption(cpu, motherboard, ram, gpu, storage);
                                if (powerConsumption > powerSupply.getPowerOutput()) {
                                    continue;
                                }
                                
                                // 计算总成本和性能评分
                                double totalCost = cpu.getPrice() + motherboard.getPrice() + ram.getPrice() + 
                                                  gpu.getPrice() + storage.getPrice() + powerSupply.getPrice();
                                double performanceScore = calculatePerformanceScore(cpu, motherboard, ram, gpu, storage);
                                
                                // 创建推荐方案
                                RecommendationDto recommendation = new RecommendationDto();
                                recommendation.setCpu(cpu);
                                recommendation.setMotherboard(motherboard);
                                recommendation.setRam(ram);
                                recommendation.setGpu(gpu);
                                recommendation.setStorage(storage);
                                recommendation.setPowerSupply(powerSupply);
                                recommendation.setTotalCost(totalCost);
                                recommendation.setPerformanceScore(performanceScore);
                                recommendation.setPerformancePriceRatio(performanceScore / totalCost);
                                
                                recommendations.add(recommendation);
                                
                                // 限制推荐方案数量
                                if (recommendations.size() >= 5) {
                                    break;
                                }
                            }
                            if (recommendations.size() >= 5) break;
                        }
                        if (recommendations.size() >= 5) break;
                    }
                    if (recommendations.size() >= 5) break;
                }
                if (recommendations.size() >= 5) break;
            }
            if (recommendations.size() >= 5) break;
        }
        
        // 按性价比排序
        recommendations.sort(Comparator.comparing(RecommendationDto::getPerformancePriceRatio).reversed());
        return recommendations;
    }

// 3. 数据可视化核心处理函数
@Service
public class DataVisualizationService {
    @Autowired
    private ComponentRepository componentRepo;
    @Autowired
    private AssemblyRepository assemblyRepo;
    @Autowired
    private UserPreferenceRepository userPrefRepo;
    
    /**
     * 生成硬件性能比较分析数据
     */
    public HardwarePerformanceComparisonData generatePerformanceComparisonData(String componentType, List<Long> componentIds) {
        HardwarePerformanceComparisonData result = new HardwarePerformanceComparisonData();
        Map<String, List<PerformanceMetric>> performanceData = new HashMap<>();
        
        // 获取要比较的组件数据
        List<Component> components;
        if (componentIds != null && !componentIds.isEmpty()) {
            components = componentRepo.findAllById(componentIds);
        } else {
            // 如果没有指定ID,获取该类型的热门组件
            components = componentRepo.findTopComponentsByTypeAndPopularity(componentType, 5);
        }
        
        if (components.isEmpty()) {
            throw new ComponentNotFoundException("No components found for comparison");
        }
        
        // 获取各组件的性能指标
        for (Component component : components) {
            List<PerformanceMetric> metrics = new ArrayList<>();
            
            // 根据组件类型获取不同的性能指标
            switch (componentType) {
                case "CPU":
                    metrics.add(new PerformanceMetric("Cores", component.getCpuCores()));
                    metrics.add(new PerformanceMetric("Threads", component.getCpuThreads()));
                    metrics.add(new PerformanceMetric("Base Clock (GHz)", component.getBaseClock()));
                    metrics.add(new PerformanceMetric("Boost Clock (GHz)", component.getBoostClock()));
                    metrics.add(new PerformanceMetric("Cache Size (MB)", component.getCacheSize()));
                    metrics.add(new PerformanceMetric("TDP (W)", component.getTdp()));
                    metrics.add(new PerformanceMetric("Single-Core Score", component.getSingleCoreScore()));
                    metrics.add(new PerformanceMetric("Multi-Core Score", component.getMultiCoreScore()));
                    break;
                    
                case "GPU":
                    metrics.add(new PerformanceMetric("VRAM (GB)", component.getVramSize()));
                    metrics.add(new PerformanceMetric("Core Clock (MHz)", component.getCoreClock()));
                    metrics.add(new PerformanceMetric("Memory Clock (MHz)", component.getMemoryClock()));
                    metrics.add(new PerformanceMetric("CUDA Cores/Stream Processors", component.getCudaCores()));
                    metrics.add(new PerformanceMetric("TDP (W)", component.getTdp()));
                    metrics.add(new PerformanceMetric("3DMark Score", component.get3dMarkScore()));
                    metrics.add(new PerformanceMetric("Ray Tracing Score", component.getRayTracingScore()));
                    break;
                    
                case "RAM":
                    metrics.add(new PerformanceMetric("Capacity (GB)", component.getCapacity()));
                    metrics.add(new PerformanceMetric("Frequency (MHz)", component.getFrequency()));
                    metrics.add(new PerformanceMetric("CAS Latency", component.getCasLatency()));
                    metrics.add(new PerformanceMetric("Memory Type", component.getMemoryType()));
                    metrics.add(new PerformanceMetric("Read Speed (MB/s)", component.getReadSpeed()));
                    metrics.add(new PerformanceMetric("Write Speed (MB/s)", component.getWriteSpeed()));
                    break;
                    
                case "STORAGE":
                    metrics.add(new PerformanceMetric("Capacity (GB)", component.getCapacity()));
                    metrics.add(new PerformanceMetric("Read Speed (MB/s)", component.getReadSpeed()));
                    metrics.add(new PerformanceMetric("Write Speed (MB/s)", component.getWriteSpeed()));
                    metrics.add(new PerformanceMetric("IOPS", component.getIops()));
                    metrics.add(new PerformanceMetric("Type", component.getStorageType()));
                    metrics.add(new PerformanceMetric("Interface", component.getStorageInterface()));
                    metrics.add(new PerformanceMetric("MTBF (hours)", component.getMtbf()));
                    break;
                    
                default:
                    throw new IllegalArgumentException("Unsupported component type: " + componentType);
            }
            
            // 添加价格和性价比指标
            metrics.add(new PerformanceMetric("Price ($)", component.getPrice()));
            metrics.add(new PerformanceMetric("Performance/Price", component.getPerformancePriceRatio()));
            
            performanceData.put(component.getName(), metrics);
        }
        
        // 获取历史价格趋势数据
        Map<String, List<PriceTrendPoint>> priceTrendData = new HashMap<>();
        for (Component component : components) {
            List<PriceTrendPoint> priceTrends = componentRepo.findPriceTrendById(component.getId());
            priceTrendData.put(component.getName(), priceTrends);
        }
        
        // 获取用户评分数据
        Map<String, Double> userRatings = new HashMap<>();
        for (Component component : components) {
            double avgRating = userPrefRepo.findAverageRatingByComponentId(component.getId());
            userRatings.put(component.getName(), avgRating);
        }
        
        // 设置结果数据
        result.setComponentType(componentType);
        result.setPerformanceData(performanceData);
        result.setPriceTrendData(priceTrendData);
        result.setUserRatings(userRatings);
        
        return result;
    }
}

六、电脑硬件推荐系统-文档展示

部分文档

七、END

致谢

💕💕文末获取源码联系计算机编程果茶熊

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值