💖💖作者:计算机编程小央姐
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持! 💜💜
💕💕文末获取源码
目录
- 基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统功能介绍
- 基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统技术介绍
- 基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统背景意义
- 基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统演示视频
- 基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统演示图片
- 基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统部分代码
- 基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-结语
基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统功能介绍
《基于大数据的气候驱动的疾病传播可视化分析系统》是一个综合性的Web数据应用项目,旨在通过现代大数据技术栈,深度挖掘并直观展示全球气候变化与特定疾病(如疟疾、登革热)传播之间的复杂关联。本系统后端技术核心选用Python语言及主流的Django框架,负责处理业务逻辑、API接口开发以及与数据处理层的交互,确保了开发的敏捷性和强大的生态支持。数据处理的重任则交由Apache Spark引擎,它能够高效地对存储在Hadoop HDFS上的大规模、跨越24年的气候与疾病数据集进行分布式计算与分析,具体通过Spark SQL执行复杂的聚合、关联与统计任务,充分体现了大数据技术的处理能力。前端界面采用Vue.js作为核心框架,结合ElementUI组件库,构建了一个响应式、用户友好的交互界面。数据的可视化呈现是本系统的亮点,我们利用强大的Echarts图表库,将Spark分析出的多维度结果,如全球疾病的长期演变趋势、季节性爆发规律、地理空间上的热点国家分布、关键气候因子的影响权重以及多指标下的复合风险评估等,转化为动态、直观的折线图、柱状图、热力地图、散点图和雷达图,让使用者能够一目了然地洞察数据背后的深层信息。整个系统从数据存储、分布式计算到后端服务和前端展示,构成了一条完整的大数据分析与应用链路,是一个兼具技术深度与现实意义的毕业设计项目。
基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统技术介绍
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL
基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统背景意义
近些年,大家都能感觉到全球气候变化不再是个遥远的概念,极端天气好像越来越频繁,夏天也似乎更热了。这种变化其实不只影响咱们的日常生活,它还在悄悄地改变着生态环境,尤其是一些疾病的传播模式。就拿蚊子传播的疟疾和登革热来说,蚊子的生长繁殖对温度、湿度和降水这些气候条件特别敏感。气温一升高,蚊子的繁殖速度可能就加快了,能活动的地盘也变大了,这就给疾病的传播创造了条件。过去,分析这种关系可能只局限于某个小区域或者短时间的数据,得出的结论也比较有限。但现在不一样了,我们进入了一个大数据时代,可以拿到覆盖全球、长达几十年的气候和公共卫生数据。这些数据量巨大,维度又多,用传统的Excel或者单机数据库来处理,简直是杯水车薪,跑起来又慢又容易卡死。所以,怎么利用现在流行的大数据技术,比如Hadoop和Spark,去高效地处理这些海量数据,从里面挖出气候变化和疾病传播之间真正的、有价值的规律,就成了一个挺有意思也很有挑战性的课题。当然了,作为一个毕业设计,这个系统肯定谈不上能直接解决什么全球性的公共卫生难题,它的意义更多是体现在学习和实践探索上。从我个人学习的角度来看,这个项目是一个非常棒的综合性实战训练。它让我不只是停留在学习理论,而是亲手搭建一个从数据存储(HDFS)、数据处理(Spark)到后端服务(Django)、再到前端可视化(Vue+Echarts)的完整项目。这个过程能让我把课堂上学的分布式计算、Web开发这些零散的知识点串起来,形成一个完整技术链路的认知,这比单纯做个增删改查的系统要锻炼人得多。从课题本身来说,它算是一个小小的尝试,探索了怎么用数据可视化的方式,把那些枯燥的数字和复杂的关联变得直观易懂。也许公共卫生领域的研究人员或者学生,能通过这个系统界面上的图表,快速地对全球疾病和气候的宏观态势有个初步了解,激发一些新的研究想法。往大一点说,这个课题也算是在响应“数据驱动决策”的号召,通过技术手段去关注气候变化对人类健康这种实实在在的影响,也算是一种技术向善的体现吧。
基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统演示视频
Python毕业设计项目:基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统
基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统演示图片
基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-系统部分代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, sum, month, year, when, lit
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.stat import Correlation
# 假设df是一个已经加载好的Spark DataFrame,包含所有字段
# df = spark.read.csv("hdfs:///path/to/your/data.csv", header=True, inferSchema=True)
spark = SparkSession.builder.appName("DiseaseAnalysis").getOrCreate()
def get_global_trend_analysis(df):
"""
功能1: 全球气候与疾病24年总体趋势分析 (对应功能1.1)
按年份分组,聚合计算平均温度、平均降水量以及总病例数。
这是最核心的宏观趋势分析,为整个系统提供一个时间维度的基准。
"""
trend_df = df.groupBy("year").agg(
avg("avg_temp_c").alias("avg_temp"),
avg("precipitation_mm").alias("avg_precipitation"),
sum("malaria_cases").alias("total_malaria_cases"),
sum("dengue_cases").alias("total_dengue_cases")
).orderBy("year")
# 这部分数据可以直接转换为JSON格式返回给前端Echarts进行渲染
# 例如,可以抽取出年份列表、温度列表、病例数列表等
# result_json = trend_df.toJSON().collect()
# print("24年总体趋势分析完成")
return trend_df
def get_correlation_matrix(df):
"""
功能2: 所有关键数值指标的相关性矩阵分析 (对应功能3.1)
计算核心数值变量之间的皮尔逊相关系数,用于生成热力图。
这个功能直接揭示了变量间的线性关系强度,是探究驱动因素的关键。
"""
numeric_cols = [
"avg_temp_c", "precipitation_mm", "air_quality_index",
"uv_index", "malaria_cases", "dengue_cases",
"population_density", "healthcare_budget"
]
# 创建一个特征向量
assembler = VectorAssembler(
inputCols=numeric_cols,
outputCol="features"
)
assembled_df = assembler.transform(df.select(numeric_cols))
# 计算皮尔逊相关系数矩阵
correlation_matrix = Correlation.corr(assembled_df, "features", "pearson").head()
# 结果是一个矩阵,需要解析后返回给前端
# corr_matrix_array = correlation_matrix[0].toArray().tolist()
# result = {"columns": numeric_cols, "matrix": corr_matrix_array}
# print("相关性矩阵计算完成")
return correlation_matrix
def get_climate_risk_quadrant_analysis(df):
"""
功能3: 气候风险象限分析 (对应功能4.1)
根据温度和降水量的中位数,将数据划入四个象限,分析各象限的平均病例数。
这个功能通过交叉分析揭示了气候因素的协同作用,比单因素分析更有深度。
"""
# 首先计算全球温度和降水量的中位数
medians = df.approxQuantile(["avg_temp_c", "precipitation_mm"], [0.5], 0.01)
median_temp = medians[0][0]
median_precip = medians[1][0]
# 使用when函数进行分类,创建新的'quadrant'列
quadrant_df = df.withColumn(
"quadrant",
when((col("avg_temp_c") >= median_temp) & (col("precipitation_mm") >= median_precip), "高温高湿")
.when((col("avg_temp_c") >= median_temp) & (col("precipitation_mm") < median_precip), "高温低湿")
.when((col("avg_temp_c") < median_temp) & (col("precipitation_mm") >= median_precip), "低温高湿")
.otherwise("低温低湿")
)
# 按象限分组,计算平均病例数
risk_analysis_df = quadrant_df.groupBy("quadrant").agg(
avg(col("malaria_cases") + col("dengue_cases")).alias("avg_total_cases")
).orderBy("avg_total_cases", ascending=False)
# 这个结果可以直接返回,用于生成矩阵图或气泡图
# result_json = risk_analysis_df.toJSON().collect()
# print("气候风险象限分析完成")
return risk_analysis_df
基于Django+Echarts+Spark实现的气候驱动疾病传播可视化分析系统-结语
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。