**辗转相除法**(也称欧几里得算法)是一种求两个数最大公约数(GCD)的方法。它的核心思想是:**用较大的数除以较小的数,再用余数反复替换,直到余数为零,最后的非零余数就是最大公约数**。以下是通俗解释:
---
### 🌰 **举个栗子:求 24 和 18 的最大公约数**
1. **第一步**:24 ÷ 18 = 1 余 6
(用大数除以小数,得到余数 6)
2. **第二步**:18 ÷ 6 = 3 余 0
(把上一步的除数 18 变成被除数,余数 6 变成除数,继续除)
3. **结束条件**:当余数为 0 时,停止计算。
(此时最后的除数 6 就是最大公约数)
**答案**:24 和 18 的最大公约数是 **6**。
---
### 🔄 **步骤总结**
1. **大数 ÷ 小数** → 记录余数。
2. **用小数替换原来的大数,余数替换原来的小数**。
3. **重复**直到余数为 0,最后一步的除数就是答案。
---
### ❓ **为什么有效?**
每次除法都把问题规模缩小,而最大公约数不会变。比如:
- 24 和 18 的公约数,一定也是 18 和 6 的公约数。
- 最终当余数为 0 时,说明找到了能整除两数的最大数。
---
### 🌟 **其他例子**
- **求 48 和 18 的最大公约数**:
48 ÷ 18 = 2 余 12 → 18 ÷ 12 = 1 余 6 → 12 ÷ 6 = 2 余 0 → **答案是 6**。
- **求 9 和 4 的最大公约数**:
9 ÷ 4 = 2 余 1 → 4 ÷ 1 = 4 余 0 → **答案是 1**(互质)。
---
**总结**:像“反复倒水测容量”一样,用余数不断替换,直到刚好除尽,剩下的就是最大公约数!