辗转相除法,通俗易懂地解释

**辗转相除法**(也称欧几里得算法)是一种求两个数最大公约数(GCD)的方法。它的核心思想是:**用较大的数除以较小的数,再用余数反复替换,直到余数为零,最后的非零余数就是最大公约数**。以下是通俗解释:

---

### 🌰 **举个栗子:求 24 和 18 的最大公约数**
1. **第一步**:24 ÷ 18 = 1 余 6  
   (用大数除以小数,得到余数 6)

2. **第二步**:18 ÷ 6 = 3 余 0  
   (把上一步的除数 18 变成被除数,余数 6 变成除数,继续除)

3. **结束条件**:当余数为 0 时,停止计算。  
   (此时最后的除数 6 就是最大公约数)

**答案**:24 和 18 的最大公约数是 **6**。

---

### 🔄 **步骤总结**
1. **大数 ÷ 小数** → 记录余数。
2. **用小数替换原来的大数,余数替换原来的小数**。
3. **重复**直到余数为 0,最后一步的除数就是答案。

---

### ❓ **为什么有效?**
每次除法都把问题规模缩小,而最大公约数不会变。比如:  
- 24 和 18 的公约数,一定也是 18 和 6 的公约数。
- 最终当余数为 0 时,说明找到了能整除两数的最大数。

---

### 🌟 **其他例子**
- **求 48 和 18 的最大公约数**:  
  48 ÷ 18 = 2 余 12 → 18 ÷ 12 = 1 余 6 → 12 ÷ 6 = 2 余 0 → **答案是 6**。

- **求 9 和 4 的最大公约数**:  
  9 ÷ 4 = 2 余 1 → 4 ÷ 1 = 4 余 0 → **答案是 1**(互质)。

---

**总结**:像“反复倒水测容量”一样,用余数不断替换,直到刚好除尽,剩下的就是最大公约数!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值