平移不变性
不管检测对象出现在图像中的哪个位置,神经网络的前面几层都应该对相同的图像区域具有相似的反应
局部性
神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远的区域的卷积层将输入和卷积核进行交叉相关,加上偏移后得到输出核矩阵和偏移是可学习的参数核矩阵的大小是超参数填充和步幅可以改变输出的高度和宽度
填充在输入周围添加额外的行/列,增加输出的高度和宽度
步幅是每次滑动核窗口时的行/列的步长,可以成倍的减少输出形状填充和步幅可用于有效地调整数据的浅层学习:不涉及特征学习,其特征主要靠人工经验或特征转换方法来抽取
表示学习:如果有一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就可以叫作表示学习
学习表征
通常需要从底层特征开始,经过多步非线性转换才能得到。
通过构建具有一定“深度”的模型,可以让模型来自动学习好的特征表示(从底层特征,到中层特征,再到高层特征),从而最终提升预测或识别的准确性。
RELU RELU RELLAlexNet比LeNet更深入更大,以获得更强性能能不能更大更深?选项
更多稠密层(开销太大)更多的卷积层
,将卷积层组合成块 RELU维度关系。