Pytorch神经网络工具箱神经网络核心组件层:神经网络的基本结构,将输入张量转换为输出张量。模型:层构成的网络。损失函数:参数学习的目标函数,通过最小化损失函数来学习各种参数。优化器:如何是损失函数最小,这就涉及到优化器。构建神经网络的主要工具nn.Module①继承自Module类,可自动提取可学习的参数。②适用于卷积层、全连接层、dropout层。nn.functional①更像是纯函数。②适用于激活函数、池化层。构建神经网络的主要工具-nn.functionalnn.Module,写法一般为nn.Xxx,如nn.Linear、nn.Conv2d、nn.CrossEntropyLoss等。nn.functional中的函数,写法一般为nn.funtional.xxx,如nn.funtional.linear、nn.funtional.conv2d、nn.funtional.cross_entropy等。两者的主要区别如下。nn.Xxx继承于nn.Module,nn.Xxx 需要先实例化并传入参数,然后以函数调用的方式调用实例化的对象并传入输入数据。它能够很好的与nn.Sequential结合使用,而nn.functional.xxx无法与nn.Sequential结合使用。nn.Xxx不需要自己定义和管理weight、bias参数;而nn.functional.xxx需要你自己定义weight、bias,每次调用的时候都需要手动传入weight、bias等参数, 不利于代码复用。dropout操作在训练和测试阶段是有区别的,使用nn.Xxx方式定义dropout,在调用model.eval()之后,自动实现状态的转换,而使用nn.functional.xxx却无此功能。自定义网络模块·残差块有两种,一种是正常的模块方式,将输入与输出相加,然后应用激活函数ReLU。·另一种是为使输入与输出形状一致,需添加通过1×1卷积调整通道和分辨率。·组合这两个模块得到现代经典RetNet18网络结构。训练模型1.加载预处理数据集2.定义损失函数3.定义优化方法4.循环训练模型5.循环测试或验证模型6.可视化结果