ChatGPT+DALL·E:生成式AI组合拳打造智能内容工厂
关键词:生成式AI、ChatGPT、DALL·E、多模态生成、智能内容工厂、提示工程、内容自动化
摘要:本文深度解析ChatGPT与DALL·E两大生成式AI模型的协同机制,从技术原理到工程实践,系统阐述如何通过“文本-图像”多模态生成构建智能内容工厂。涵盖核心算法原理、数学模型、项目实战案例及实际应用场景,同时探讨未来发展趋势与挑战,为开发者和企业提供从技术理解到落地应用的全链路指南。
1. 背景介绍
1.1 目的和范围
在内容经济时代,企业和个人对高质量、高效率的内容生产需求呈指数级增长。传统内容创作依赖人工,存在成本高、周期长、标准化难等痛点。生成式AI的崛起为解决这些问题提供了关键突破口:ChatGPT(文本生成)与DALL·E(图像生成)的组合,通过多模态协同能力,可实现“文本-图像”全链路自动化生成,构建覆盖营销、教育、设计等多领域的智能内容工厂。
本文范围覆盖:
- ChatGPT与DALL·E的技术原理与协同机制
- 多模态生成的数学模型与算法实现
- 从提示工程到项目落地的实战指南
- 典型应用场景与未来趋势
1.2 预期读者
- 人工智能开发者(关注多模态生成技术实现)
- 企业技术决策者(探索内容生产降本增效方案)
- 内容创作者(希望利用AI工具提升创作效率)
- 学术研究者(研究生成式AI协同机制)
1.3 文档结构概述
本文采用“技术原理→数学模型→工程实践→应用场景→未来展望”的逻辑链:
- 核心概念与联系:解析ChatGPT与DALL·E的技术架构及协同流程
- 算法原理:从Transformer到扩散模型的底层实现
- 数学模型:注意力机制、扩散过程、CLIP对齐的公式推导
- 项目实战:电商内容生成系统的完整开发案例
- 应用场景:覆盖营销、教育、游戏等领域的具体落地
- 工具资源:推荐开发工具、学习资料与论文
1.4 术语表
1.4.1 核心术语定义
- 生成式AI(Generative AI):通过学习数据分布,生成新的、原创内容(文本、图像、视频等)的AI技术。
- 多模态生成(Multimodal Generation):同时处理文本、图像、语音等多种模态数据并生成跨模态内容的技术。
- 提示工程(Prompt Engineering):通过设计输入文本(提示词)引导AI生成符合预期内容的技术。
- 扩散模型(Diffusion Model):通过逐步添加噪声再逆向去噪生成图像的深度生成模型。
1.4.2 相关概念解释
- Transformer架构:基于自注意力机制的深度学习模型,是ChatGPT的核心架构。
- CLIP(Contrastive Language-Image Pretraining):OpenAI提出的多模态对齐模型,用于学习文本与图像的语义关联。
- API Pipeline:通过调用API将不同AI模型串联,实现端到端任务的工程方法。
1.4.3 缩略词列表
- LLM(Large Language Model):大语言模型(如ChatGPT)
- VAE(Variational Autoencoder):变分自编码器(DALL·E 2的组件之一)
- GAN(Generative Adversarial Network):生成对抗网络(早期图像生成模型)
2. 核心概念与联系
2.1 ChatGPT与DALL·E的技术定位
ChatGPT是基于Transformer的大语言模型(LLM),擅长理解和生成自然语言,支持对话、文案创作、代码编写等文本任务;DALL·E是多模态图像生成模型(DALL·E 3已集成GPT-4,支持更复杂的文本理解),通过文本提示生成高精度图像。二者的核心差异在于模态输出:ChatGPT专注文本,DALL·E专注图像,但通过提示工程可实现“文本→图像”或“图像→文本”的跨模态生成。
2.2 协同机制:多模态内容工厂的核心流程
二者的协同本质是**“文本驱动图像,图像反哺文本”**的闭环。典型流程如下(图1):
graph TD
A[用户需求] --> B[ChatGPT生成文本]
B --> C[文本优化(提示工程)]
C --> D[DALL·E生成图像]
D --> E[内容验证]
E --> F[输出多模态内容]
F --> G[用户反馈]
G --> B[迭代优化]
图1:ChatGPT+DALL·E协同流程图
关键节点解析:
- 需求输入:用户提供模糊需求(如“生成一组环保主题的儿童绘本内容”)。
- 文本生成:ChatGPT将需求转化为结构化文本(故事大纲、角色描述、场景说明)。
- 提示优化:对文本进行“图像友好”处理(如突出视觉关键词“绿色森林”“可爱动物”)。
- 图像生成:DALL·E根据优化后的提示生成匹配图像。
- 内容验证:检查文本与图像的一致性(如角色外貌是否符合描述)。
- 反馈迭代:用户调整需求后,重复流程直至满意。
2.3 技术互补性分析
能力维度 | ChatGPT优势 | DALL·E优势 | 协同价值 |
---|---|---|---|
语义理解 | 深度文本语义解析(长程依赖) | 跨模态语义对齐(文本-图像) | 文本生成更贴合图像意图,图像生成更精准 |
内容生成 | 结构化文本(故事、代码) | 创意图像(场景、角色) | 从文字到视觉的全链路覆盖 |
灵活性 | 支持复杂逻辑推理(数学、编程) | 支持细节控制(风格、色调) | 文本提供逻辑框架,图像补充视觉细节 |
3. 核心算法原理 & 具体操作步骤
3.1 ChatGPT的文本生成原理
ChatGPT基于Transformer架构,采用自回归(Autoregressive)生成方式,通过预测下一个token的概率分布生成文本。其核心是多头自注意力机制(Multi-Head Self-Attention),允许模型在生成每个词时关注输入序列的任意位置。
3.1.1 自注意力计算
自注意力的核心是计算查询(Query)、键(Key)、值(Value)的相似性:
Attention
(
Q
,
K
,
V
)
=
softmax
(
Q
K
T
d
k
)
V
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
Attention(Q,K,V)=softmax(dkQKT)V
其中,
Q
,
K
,
V
Q, K, V
Q,K,V 是输入序列通过线性变换得到的矩阵,
d
k
d_k
dk 是键向量的维度(防止点积过大导致softmax梯度消失)。
3.1.2 生成过程示例(Python伪代码)
def generate_text(prompt, model, tokenizer, max_length=100):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(
input_ids,
max_length=max_length,
temperature=0.7, # 控制随机性,值越大越随机
do_sample=True # 启用采样而非贪心搜索
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# 使用示例
prompt = "请描述一个关于小熊猫的温馨故事开头:"
story = generate_text(prompt, chatgpt_model, chatgpt_tokenizer)
print(story)
3.2 DALL·E的图像生成原理
DALL·E 2采用“文本-图像”扩散模型,核心流程包括:
- 文本编码:用CLIP的文本编码器将提示词转换为嵌入向量(Text Embedding)。
- 图像扩散:通过扩散模型逐步向随机噪声图像添加条件(文本嵌入),逆向去噪生成目标图像。
3.2.1 扩散模型基础
扩散模型分为正向过程(加噪)和逆向过程(去噪):
-
正向过程:向干净图像 x 0 x_0 x0 逐步添加高斯噪声,得到 x t x_t xt( t t t 为时间步):
x t = α ˉ t x 0 + 1 − α ˉ t ϵ , ϵ ∼ N ( 0 , I ) x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1-\bar{\alpha}_t}\epsilon,\ \epsilon \sim \mathcal{N}(0, I) xt=αˉtx0+1−αˉtϵ, ϵ∼N(0,I)
其中, α ˉ t = ∏ s = 1 t α s \bar{\alpha}_t = \prod_{s=1}^t \alpha_s αˉt=∏s=1tαs, α s \alpha_s αs 是预定义的噪声系数。 -
逆向过程:训练一个去噪模型 ϵ θ ( x t , t , c ) \epsilon_\theta(x_t, t, c) ϵθ(xt,t,c)( c c c 为文本条件),预测噪声 ϵ \epsilon ϵ,从而恢复 x t − 1 x_{t-1} xt−1:
x t − 1 = 1 α t ( x t − 1 − α t 1 − α ˉ t ϵ θ ( x t , t , c ) ) x_{t-1} = \frac{1}{\sqrt{\alpha_t}}\left(x_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}}\epsilon_\theta(x_t, t, c)\right) xt−1=αt1(xt−1−αˉt1−αtϵθ(xt,t,c))
3.2.2 生成过程示例(Python API调用)
import openai
# 设置API密钥
openai.api_key = "YOUR_API_KEY"
def generate_image(prompt, size="1024x1024"):
response = openai.Image.create(
prompt=prompt,
n=1, # 生成1张图
size=size
)
image_url = response['data'][0]['url']
return image_url
# 使用ChatGPT生成的文本作为提示
story_prompt = "一只小熊猫在开满樱花的森林里收集蜂蜜,背景温暖明亮,风格为水彩画"
image_url = generate_image(story_prompt)
print(f"生成的图像URL:{image_url}")
3.3 协同操作步骤总结
- 需求拆解:将用户需求分解为文本部分(如故事大纲)和图像部分(如场景描述)。
- 文本生成:用ChatGPT生成详细文本,确保包含图像生成所需的关键视觉元素(颜色、风格、主体)。
- 提示优化:对文本进行“图像友好”处理,例如将“一只可爱的动物”改为“一只毛茸茸的小熊猫,圆耳朵,棕白相间的毛发”。
- 图像生成:调用DALL·E API,传入优化后的提示,生成多版本图像(通过
n=3
参数)。 - 内容对齐验证:检查图像是否准确反映文本描述(如角色外貌、场景细节),若不符则调整提示词或重新生成文本。
4. 数学模型和公式 & 详细讲解 & 举例说明
4.1 Transformer的注意力机制数学模型
ChatGPT的核心是Transformer的多头注意力(Multi-Head Attention),其数学表达为:
MultiHead
(
Q
,
K
,
V
)
=
Concat
(
head
1
,
…
,
head
h
)
W
O
\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O
MultiHead(Q,K,V)=Concat(head1,…,headh)WO
其中,每个头(head)的计算为:
head
i
=
Attention
(
Q
W
i
Q
,
K
W
i
K
,
V
W
i
V
)
\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
headi=Attention(QWiQ,KWiK,VWiV)
W
i
Q
,
W
i
K
,
W
i
V
W_i^Q, W_i^K, W_i^V
WiQ,WiK,WiV 是第
i
i
i 头的线性变换矩阵,
W
O
W^O
WO 是输出投影矩阵。
举例:假设输入文本为“小熊猫吃竹子”,模型在生成“吃”时,需要关注“小熊猫”(主体)和“竹子”(对象),通过注意力机制计算三者的关联权重,确保生成的动词与上下文一致。
4.2 扩散模型的损失函数
DALL·E的扩散模型训练目标是最小化预测噪声与真实噪声的均方误差(MSE):
L
simple
(
θ
)
=
E
t
,
x
0
,
ϵ
[
∥
ϵ
−
ϵ
θ
(
α
ˉ
t
x
0
+
1
−
α
ˉ
t
ϵ
,
t
,
c
)
∥
2
]
\mathcal{L}_{\text{simple}}(\theta) = \mathbb{E}_{t, x_0, \epsilon}\left[\|\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_t}x_0 + \sqrt{1-\bar{\alpha}_t}\epsilon, t, c)\|^2\right]
Lsimple(θ)=Et,x0,ϵ[∥ϵ−ϵθ(αˉtx0+1−αˉtϵ,t,c)∥2]
举例:当训练数据包含“红色苹果”的图像时,模型需要学习在给定文本“红色苹果”时,预测噪声的分布,从而逆向生成符合描述的图像。
4.3 CLIP的对比学习模型
CLIP用于对齐文本与图像的语义空间,其目标是最大化正样本对(匹配的文本-图像)的相似度,最小化负样本对的相似度。损失函数为:
L
CLIP
=
−
E
[
log
exp
(
sim
(
t
,
i
)
/
τ
)
∑
i
′
exp
(
sim
(
t
,
i
′
)
/
τ
)
+
log
exp
(
sim
(
t
,
i
)
/
τ
)
∑
t
′
exp
(
sim
(
t
′
,
i
)
/
τ
)
]
\mathcal{L}_{\text{CLIP}} = -\mathbb{E}\left[\log\frac{\exp(\text{sim}(t, i)/\tau)}{\sum_{i'}\exp(\text{sim}(t, i')/\tau)} + \log\frac{\exp(\text{sim}(t, i)/\tau)}{\sum_{t'}\exp(\text{sim}(t', i)/\tau)}\right]
LCLIP=−E[log∑i′exp(sim(t,i′)/τ)exp(sim(t,i)/τ)+log∑t′exp(sim(t′,i)/τ)exp(sim(t,i)/τ)]
其中,
sim
(
t
,
i
)
\text{sim}(t, i)
sim(t,i) 是文本嵌入
t
t
t 与图像嵌入
i
i
i 的余弦相似度,
τ
\tau
τ 是温度参数。
举例:当输入文本“一只正在睡觉的猫”和图像(猫睡觉)作为正样本时,CLIP会学习使二者的嵌入向量在空间中接近;而与“一只奔跑的狗”的图像(负样本)保持距离。
5. 项目实战:电商产品内容生成系统
5.1 开发环境搭建
目标:搭建一个“产品描述+产品图”自动生成系统,输入产品类别(如“智能手表”)和核心卖点(如“长续航、血氧监测”),输出营销文案和产品图。
环境配置:
- 操作系统:Windows/Linux/macOS
- 开发工具:VS Code(或PyCharm)
- 依赖库:
openai
(调用API)、requests
(下载图像)、python-dotenv
(管理API密钥) - API密钥:需在OpenAI官网申请,启用ChatGPT(gpt-3.5-turbo或gpt-4)和DALL·E API权限。
5.2 源代码详细实现和代码解读
# 步骤1:安装依赖
!pip install openai requests python-dotenv
# 步骤2:配置API密钥(创建.env文件)
OPENAI_API_KEY="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
# 步骤3:核心代码实现
import os
import openai
from dotenv import load_dotenv
import requests
# 加载环境变量
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
def chatgpt_generate(prompt, model="gpt-3.5-turbo", temperature=0.7):
"""调用ChatGPT生成文本"""
response = openai.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message['content']
def dalle_generate(prompt, size="1024x1024", n=1):
"""调用DALL·E生成图像,返回URL列表"""
response = openai.Image.create(
prompt=prompt,
n=n,
size=size
)
return [data['url'] for data in response['data']]
def download_image(url, save_path):
"""下载图像到本地"""
response = requests.get(url)
with open(save_path, "wb") as f:
f.write(response.content)
def ecom_content_pipeline(product_type, features):
"""电商内容生成主流程"""
# 步骤1:生成产品描述
desc_prompt = f"""请为{product_type}撰写营销文案,需包含以下核心卖点:{features}。
要求:口语化、有吸引力,200字左右。"""
product_desc = chatgpt_generate(desc_prompt)
print("生成的产品描述:\n", product_desc)
# 步骤2:生成图像提示词(从描述中提取视觉关键词)
image_prompt_prompt = f"""从以下产品描述中提取适合生成产品图的关键视觉元素(如外观、颜色、场景),用简洁的语言组成提示词:
{product_desc}"""
image_prompt = chatgpt_generate(image_prompt_prompt, temperature=0.3) # 降低随机性,确保提示词准确
print("生成的图像提示词:\n", image_prompt)
# 步骤3:生成并下载图像
image_urls = dalle_generate(image_prompt, n=2) # 生成2张图
for i, url in enumerate(image_urls):
save_path = f"{product_type}_image_{i+1}.png"
download_image(url, save_path)
print(f"图像已保存至:{save_path}")
return product_desc, image_urls
# 测试运行(输入产品类型和卖点)
ecom_content_pipeline(
product_type="智能手表",
features="14天超长续航、血氧/心率实时监测、圆形AMOLED屏幕"
)
5.3 代码解读与分析
- chatgpt_generate函数:通过
ChatCompletion
接口调用ChatGPT,支持调整temperature
(控制生成多样性,0为完全确定,1为高随机)。 - dalle_generate函数:通过
Image.create
接口调用DALL·E,n
参数控制生成图像数量,size
指定分辨率(可选256x256、512x512、1024x1024)。 - ecom_content_pipeline主流程:
- 生成产品描述:结合产品类型和卖点,输出营销文案。
- 提取图像提示词:通过二次调用ChatGPT,从文本中提取视觉关键词(如“圆形AMOLED屏幕”“14天续航标识”),避免直接使用长文本导致DALL·E理解偏差。
- 生成并下载图像:生成多张图供选择,适应不同设计需求。
优化点:
- 可添加内容审核(如使用OpenAI的Moderation API过滤违规内容)。
- 支持批量生成(通过循环处理多个产品)。
- 集成用户反馈(如通过评分调整
temperature
参数,优化生成质量)。
6. 实际应用场景
6.1 数字营销:广告内容自动化
- 场景:电商平台需为 thousands of SKU生成“标题+描述+主图”。
- 方案:ChatGPT生成差异化标题和描述(如针对不同消费群体调整语气),DALL·E生成产品图(支持变体:白天/夜晚场景、不同颜色版本)。
- 价值:传统人工需数天/SKU,AI可在分钟级完成,成本降低80%以上。
6.2 教育出版:互动教材生成
- 场景:儿童绘本需“文字故事+插图”,教育课件需“知识点讲解+示意图”。
- 方案:ChatGPT生成符合儿童认知的故事文本(控制词汇难度),DALL·E生成插画(支持指定风格:卡通、水彩);或为知识点(如“光合作用”)生成流程图、示意图。
- 价值:解决教育内容“量大质高”的需求,支持个性化教材(如针对不同阅读水平调整故事复杂度)。
6.3 游戏开发:角色与场景设计
- 场景:独立游戏团队需快速生成NPC背景故事、游戏场景概念图。
- 方案:ChatGPT生成NPC的背景故事(如“来自迷雾森林的精灵猎人,擅长使用弓箭”),DALL·E生成角色立绘(指定“精灵尖耳、绿色皮甲、弓箭”);或生成游戏场景(如“魔法城堡,夜晚,火把照亮城墙”)。
- 价值:降低美术和文案的初期投入,加速原型开发(传统需数周,AI可在1天内完成多版本设计)。
6.4 设计行业:创意初稿生成
- 场景:平面设计师需为客户提供多版海报初稿,工业设计师需快速验证产品外观。
- 方案:ChatGPT生成海报文案(如“夏日促销:满200减50”),DALL·E生成海报设计(指定“清新风格,绿色主色调,产品图居中”);或为产品设计生成3D概念图(如“圆形智能手表,金属表壳,黑色表带”)。
- 价值:设计师可将精力集中于优化(而非从头设计),效率提升50%以上。
7. 工具和资源推荐
7.1 学习资源推荐
7.1.1 书籍推荐
- 《Attention Is All You Need》论文(Transformer原始论文)
- 《Generative Deep Learning》(ISBN: 9781617297563):系统讲解生成式模型(包括扩散模型)。
- 《自然语言处理:基于预训练模型的方法》(车万翔等著):LLM技术详解。
7.1.2 在线课程
- Coursera《Deep Learning Specialization》(Andrew Ng):深度学习基础。
- Fast.ai《Practical Deep Learning for Coders》:实战导向的深度学习课程。
- OpenAI官方文档(https://platform.openai.com/docs):API使用与最佳实践。
7.1.3 技术博客和网站
- Hugging Face Blog(https://huggingface.co/blog):发布最新模型与技术解读。
- Towards Data Science(https://towardsdatascience.com):生成式AI案例与原理分析。
- 机器之心(https://www.jiqizhixin.com):中文AI技术资讯。
7.2 开发工具框架推荐
7.2.1 IDE和编辑器
- VS Code(推荐插件:Python、Docker):轻量高效,支持远程开发。
- PyCharm Pro:专业Python IDE,集成调试与测试工具。
7.2.2 调试和性能分析工具
- OpenAI API Logging:通过
openai.util.log
查看请求日志,定位生成异常。 - Locust(https://locust.io):API性能测试(如并发调用DALL·E的延迟)。
7.2.3 相关框架和库
- Transformers(Hugging Face):支持自定义LLM训练与推理(如加载Llama 2模型)。
- Diffusers(Hugging Face):开源扩散模型库,支持Stable Diffusion等模型的本地部署。
- LangChain(https://python.langchain.com):用于构建LLM应用的框架,支持链式调用(如ChatGPT→DALL·E流程)。
7.3 相关论文著作推荐
7.3.1 经典论文
- Vaswani A, et al. “Attention Is All You Need.” NIPS 2017.(Transformer奠基作)
- Brown T, et al. “Language Models are Few-Shot Learners.” 2020.(GPT-3论文)
- Ramesh A, et al. “Zero-Shot Text-to-Image Generation.” 2021.(DALL·E 1论文)
7.3.2 最新研究成果
- Ramesh A, et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents.” 2022.(DALL·E 2论文)
- OpenAI. “GPT-4 Technical Report.” 2023.(GPT-4多模态能力详解)
7.3.3 应用案例分析
- “Automated Content Creation with GPT-4 and DALL·E 3”(OpenAI官方案例)
- “Scaling Content Production with Generative AI”(麦肯锡报告,2023)
8. 总结:未来发展趋势与挑战
8.1 发展趋势
- 多模态大模型深度融合:GPT-4已支持图像输入,未来模型将同时处理文本、图像、视频、语音,实现“全模态生成”(如输入一段视频描述,生成视频内容)。
- 实时协作生成:结合AIGC与UGC(用户生成内容),实现“用户调整-模型实时生成”的互动创作(如在线设计工具中,用户拖动调整图像位置,模型自动优化细节)。
- 行业垂直化:针对医疗、法律等专业领域,训练垂直大模型(如医疗版ChatGPT+医学影像生成模型),提升内容专业性(如生成符合医学规范的解剖图)。
8.2 核心挑战
- 内容质量控制:生成内容可能存在逻辑错误(如ChatGPT虚构事实)、图像失真(如DALL·E生成的手指数错误),需通过提示工程优化和后处理校验(如引入领域知识库)解决。
- 版权与伦理:生成内容的版权归属(用户、模型训练数据原作者、AI公司?)、潜在偏见(如性别/种族刻板印象)需法律与技术共同规范(如开发内容水印技术)。
- 计算成本与效率:高分辨率图像生成(如4K)和长文本生成(如小说)需大量算力,需通过模型压缩(如量化、蒸馏)和分布式推理降低成本。
9. 附录:常见问题与解答
Q1:如何优化提示词,使DALL·E生成的图像更符合预期?
A:关键是提供具体、细节化的描述,包括:
- 主体(“小熊猫”而非“动物”)
- 风格(“水彩画”“3D渲染”)
- 颜色(“棕白相间的毛发”“背景为淡蓝色”)
- 场景(“在樱花树下”“阳光照射”)
- 排除项(“避免模糊”“不要卡通风格”)
Q2:ChatGPT生成的文本与DALL·E生成的图像不一致怎么办?
A:可通过以下步骤优化:
- 在文本生成阶段明确视觉要求(如“描述小熊猫的外貌细节:圆耳朵、短尾巴”)。
- 用ChatGPT二次处理文本,提取“图像友好”的提示词(如“小熊猫,圆耳朵,棕白毛发,樱花树下”)。
- 对DALL·E生成的图像进行人工或自动校验(如使用CLIP计算文本与图像的相似度,低于阈值则重新生成)。
Q3:生成内容的版权属于谁?
A:目前法律尚未明确,但主流做法是:
- 若用户提供提示词并调整生成结果,版权可能归用户。
- 若完全由AI生成(无人工干预),部分国家(如美国)不授予版权。建议在商业使用前咨询法律专家,并保留创作过程记录(如提示词修改历史)。
Q4:调用API的成本如何?
A:以OpenAI为例(2023年10月定价):
- ChatGPT(gpt-3.5-turbo):输入0.0015美元/1000 tokens,输出0.002美元/1000 tokens(约1元人民币/10万中文字)。
- DALL·E:生成1张1024x1024图像约0.02美元(约0.15元人民币)。
企业级批量生成可申请API用量折扣。
10. 扩展阅读 & 参考资料
- OpenAI官方文档:https://platform.openai.com/docs
- Hugging Face Diffusers库:https://huggingface.co/docs/diffusers
- CLIP论文:https://arxiv.org/abs/2103.00020
- DALL·E 2论文:https://arxiv.org/abs/2204.06125
- GPT-4技术报告:https://cdn.openai.com/papers/gpt-4.pdf