期货数据API对接实战指南

一、期货数据接口概述

StockTV提供全球主要期货市场的实时行情与历史数据接口,覆盖以下品种:

  • 商品期货:原油、黄金、白银、铜、天然气、农产品等
  • 金融期货:股指期货、国债期货
  • 特色品种:马棕油、铁矿石等区域特色期货

二、环境准备与配置

1. API密钥获取

API_KEY = "your_futures_api_key"  # 通过官网申请
BASE_URL = "https://api.stocktv.top"

2. 安装必要库

pip install requests pandas matplotlib websocket-client

三、期货行情数据对接

1. 获取期货合约列表

def get_futures_list():
    """获取可交易期货合约列表"""
    url = f"{BASE_URL}/futures/list"
    params = {"key": API_KEY}
    response = requests.get(url, params=params)
    return response.json()

# 示例调用
futures_list = get_futures_list()
print("可用期货合约:", [f"{x['symbol']} ({x['name']})" for x in futures_list['data'][:5]])

2. 查询特定合约行情

def get_futures_quote(symbol):
    """获取期货合约实时行情"""
    url = f"{BASE_URL}/futures/quote"
    params = {
        "symbol": symbol,
        "key": API_KEY
    }
    response = requests.get(url, params=params)
    return response.json()

# 获取原油期货行情
crude_oil = get_futures_quote("CL1!")
print(f"WTI原油最新价: {crude_oil['data']['last']} 涨跌: {crude_oil['data']['change']}")

四、期货K线数据获取

1. 历史K线数据接口

def get_futures_kline(symbol, interval="1d", limit=100):
    """
    获取期货K线数据
    :param symbol: 合约代码
    :param interval: 时间间隔(1m/5m/15m/1h/1d)
    :param limit: 数据条数
    """
    url = f"{BASE_URL}/futures/kline"
    params = {
        "symbol": symbol,
        "interval": interval,
        "limit": limit,
        "key": API_KEY
    }
    response = requests.get(url, params=params)
    data = response.json()
    
    # 转换为DataFrame
    df = pd.DataFrame(data['data'])
    df['time'] = pd.to_datetime(df['time'], unit='ms')
    return df

# 获取黄金期货15分钟K线
gold_kline = get_futures_kline("GC1!", "15m")

2. K线数据可视化

import matplotlib.pyplot as plt

def plot_futures_kline(df, title):
    plt.figure(figsize=(12,6))
    plt.title(title)
    
    # 绘制蜡烛图
    for i, row in df.iterrows():
        color = 'red' if row['close'] > row['open'] else 'green'
        plt.plot([i, i], [row['low'], row['high']], color=color)
        plt.plot([i-0.2, i+0.2], [row['open'], row['open']], color=color)
        plt.plot([i-0.2, i+0.2], [row['close'], row['close']], color=color)
    
    plt.xlabel('时间')
    plt.ylabel('价格')
    plt.grid()
    plt.show()

plot_futures_kline(gold_kline, "COMEX黄金期货15分钟K线")

五、期货交易数据存储方案

1. 数据库设计(SQL示例)

import sqlite3

def init_db():
    conn = sqlite3.connect('futures_data.db')
    c = conn.cursor()
    
    c.execute('''CREATE TABLE IF NOT EXISTS futures_quotes
                 (symbol text, last real, volume integer, 
                  time timestamp, PRIMARY KEY (symbol, time))''')
    
    c.execute('''CREATE TABLE IF NOT EXISTS futures_kline
                 (symbol text, open real, high real, low real, 
                  close real, volume integer, time timestamp,
                  PRIMARY KEY (symbol, time))''')
    
    conn.commit()
    conn.close()

init_db()

2. 数据存储实现

def save_futures_quote(data):
    conn = sqlite3.connect('futures_data.db')
    c = conn.cursor()
    
    c.execute('''INSERT INTO futures_quotes 
                 VALUES (?, ?, ?, ?)''',
              (data['symbol'], data['last'], data['volume'], data['time']))
    
    conn.commit()
    conn.close()

def save_futures_kline(symbol, kline_data):
    conn = sqlite3.connect('futures_data.db')
    c = conn.cursor()
    
    for row in kline_data:
        c.execute('''INSERT INTO futures_kline 
                     VALUES (?, ?, ?, ?, ?, ?, ?)''',
                  (symbol, row['open'], row['high'], row['low'],
                   row['close'], row['volume'], row['time']))
    
    conn.commit()
    conn.close()

六、生产环境注意事项

  1. 错误处理与重试机制
from tenacity import retry, stop_after_attempt, wait_exponential

@retry(stop=stop_after_attempt(3), 
       wait=wait_exponential(multiplier=1, min=2, max=10))
def safe_futures_api_call(url, params):
    try:
        response = requests.get(url, params=params, timeout=5)
        response.raise_for_status()
        return response.json()
    except Exception as e:
        print(f"API调用失败: {e}")
        raise
  1. 性能优化建议
  • 使用Redis缓存高频访问的合约信息
  • 批量获取多个合约数据减少API调用次数
  • 对历史K线数据实现本地存储

七、完整示例:期货监控系统

import schedule
import time

class FuturesMonitor:
    def __init__(self):
        self.tracked_symbols = ["CL1!", "GC1!"]
    
    def update_data(self):
        for symbol in self.tracked_symbols:
            # 获取实时行情
            quote = get_futures_quote(symbol)
            print(f"{symbol} 最新价: {quote['data']['last']}")
            
            # 获取K线数据
            kline = get_futures_kline(symbol, "15m")
            print(f"最近3根K线: {kline.tail(3)}")
            
            # 存储数据
            save_futures_quote(quote['data'])
    
    def run(self):
        # 每15秒更新一次数据
        schedule.every(15).seconds.do(self.update_data)
        
        while True:
            schedule.run_pending()
            time.sleep(1)

# 启动监控
monitor = FuturesMonitor()
monitor.run()

八、总结与资源

核心功能总结

  1. 实时行情:获取期货合约的最新价格、成交量等数据
  2. 历史数据:获取不同时间周期的K线数据
  3. 实时推送:通过WebSocket接收实时行情更新

扩展资源

注意事项

  1. 期货合约存在到期日,注意合约切换
  2. 不同品种的交易时间不同
  3. 实时行情需处理网络中断等异常情况
期货全品种行情下载工具和行情重播回测API 期货市场全品种行情tick数据收集工具3.1 支持盘中实时行情和历史行情连续回播,开盘时间申请到当前行情时间段也不会缺行情, 当数据服务器将文件历史行情回播完成后,开始接着播放实时行情,直到通过python api 调用方法,通知服务器停止回播实时行情。 目前不支持并发,对同一个品种多次调用回播api,会导致回播行情数据顺序错乱。 对不同品种多次调用回播api,可能因为cpu占用过大,会导致服务器UI没有响应。后面升级版本会 完整的并发解决方案。 期货市场全品种行情tick数据收集工具3.0 (1)TCP网络连接由同步模式改为异步模式,解决某些网络状况无法连接数据采集服务器的问题 未来升级版本将优化性能 期货市场全品种行情tick数据收集工具2.9b 清理了不需要的.lib,不会再提示缺少ctp的dll文件,删除了不需要的方法 支持任意IP地址的连接,可以实现连接云主机运行的行情收集服务器,或局域网里的行情收集服务器。 期货市场全品种行情tick数据收集工具2.9 修复了多个API进程之间回调数据时互相影响 当前合约数约323个合约,最大范围1200个合约,视合约产品而定。 本例正式发布版本2.7 可以自由设置行情服务器 模拟simnow24小时行情服务器在交易日上午没有数据,要在下午4点之后才有数据。 模拟simnow实盘同步时间服务器,和实盘同步。 可改为期货公司的服务器IP,见“快期”软件设置“测试和代理”中的行情IP地址 双击合约文件列表可打开分时图 TestPythonApi可以调用DataCollectServer收集的行情数据(给定合约和时间段) 2017.3.11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值