Day22/23

Day22:titanic数据集处理

PassengerId乘客编号
Survived是否幸存(0表示未幸存,1表示幸存)
Pclass乘客舱位等级(1表示一等舱,2表示二等舱,3表示三等舱)
Name乘客姓名
Sex性别
Age年龄
SibSp同乘的兄弟姐妹或配偶数量
Parch同乘的父母或子女数量
Ticket票号
Fare票价
Cabin舱室号
Embarked登船港口
  • 导入库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix,precision_score,f1_score,recall_score
from imblearn.over_sampling import SMOTE
from sklearn.metrics import accuracy_score
from lightgbm import LGBMClassifier
import matplotlib.pyplot as plt
import seaborn as sns
import shap
import warnings
# 忽略警告
warnings.filterwarnings("ignore")
 
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
  • 读取数据
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
train_data
结果:
  • 数据处理
#删除无关列 乘客编号、名字、
drop_columns = ['Name','Ticket','PassengerId','Cabin']
train_data = train_data.drop(drop_columns,axis=1)
test_data = test_data.drop(drop_columns,axis=1)

# 性别0-1编码
train_data['Sex'] = train_data['Sex'].map({'female': 0, 'male': 1})
test_data['Sex'] = test_data['Sex'].map({'female': 0, 'male': 1})
train_data
#找连续变量借助select_dtypes方法。
continuous_features = train_data.select_dtypes(include=['float64', 'int64']).columns.tolist()
continuous_features

#填补缺失值(对年龄中位数)
imputer_median = SimpleImputer(strategy='median')
train_data['Age'] = imputer_median.fit_transform(train_data[['Age']])
train_data.isnull().sum()
#分离离散特征
discrete_features = ['Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']
# 离散特征独热编码
encoded_df = pd.get_dummies(train_data[discrete_features], drop_first=True)
 #_df表示datafame
# 连续特征标准化
scaler = StandardScaler()
scaled_continuous = scaler.fit_transform(train_data[continuous_features])
scaled_df = pd.DataFrame(scaled_continuous, columns=continuous_features)
 
# 合并所有特征
X = pd.concat([scaled_df, encoded_df], axis=1)
y = train_data['Survived']
#划分训练测试机
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  • 可视化
plt.figure(figsize=(15, 10))
 
# 连续特征分布
plt.subplot(2, 2, 1)
data['Sex'].hist(bins=30)
plt.title('Age Distribution')
 
plt.subplot(2, 2, 2)
data['Embarked'].hist(bins=30)
plt.title('Fare Distribution')
 
# 离散特征与生存率关系
plt.subplot(2, 2, 3)
data.groupby('Pclass')['Survived'].mean().plot(kind='bar')
plt.title('Survival Rate by Pclass')
plt.ylabel('Survival Rate')
 
plt.subplot(2, 2, 4)
data.groupby('Sex')['Survived'].mean().plot(kind='bar')
plt.title('Survival Rate by Sex')
plt.ylabel('Survival Rate')
 
plt.tight_layout()
plt.show()
 
  • SMOTE过采样训练模型
import time
import numpy as np
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import classification_report, confusion_matrix
import time
# SMOTE 过采样
X_train_smote, y_train_smote = SMOTE(random_state=42).fit_resample(X_train, y_train)
print("SMOTE过采样后训练集的形状:", X_train_smote.shape, y_train_smote.shape)
 
# 训练随机森林模型并计时
start_time = time.time()
rf_pred_smote = RandomForestClassifier(random_state=42).fit(X_train_smote, y_train_smote).predict(X_test)
end_time = time.time()
print(f"SMOTE过采样后训练与预测耗时: {end_time - start_time:.4f} 秒")
 
# 输出评估结果
print("\nSMOTE过采样后随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_smote))
print("SMOTE过采样后随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_smote))
结果:
SMOTE过采样后训练集的形状: (888, 8) (888,)
SMOTE过采样后训练与预测耗时: 0.1240 秒

SMOTE过采样后随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.85      0.81      0.83       105
           1       0.75      0.80      0.77        74

    accuracy                           0.80       179
   macro avg       0.80      0.80      0.80       179
weighted avg       0.81      0.80      0.81       179

SMOTE过采样后随机森林 在测试集上的混淆矩阵:
[[85 20]
 [15 59]]
  • 调参分析指标
#调参
rf_param_grid = {
    'n_estimators': [100, 200],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, ]
}
rf_grid_search = GridSearchCV(RandomForestClassifier(random_state=42), rf_param_grid, cv=5)
rf_grid_search.fit(X_train, y_train)
rf_best_model = rf_grid_search.best_estimator_
rf_pred = rf_best_model.predict(X_test)
 
print("\n随机森林(调参后) 分类报告:")
print(classification_report(y_test, rf_pred))
print("随机森林(调参后) 混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
 
rf_accuracy = accuracy_score(y_test, rf_pred)
rf_precision = precision_score(y_test, rf_pred)
rf_recall = recall_score(y_test, rf_pred)
rf_f1 = f1_score(y_test, rf_pred)
print("随机森林(调参后) 模型评估指标:")
print(f"准确率: {rf_accuracy:.4f}")
print(f"精确率: {rf_precision:.4f}")
print(f"召回率: {rf_recall:.4f}")
print(f"F1 值: {rf_f1:.4f}")
best_rf = rf_grid_search.best_estimator_
随机森林(调参后) 分类报告:
              precision    recall  f1-score   support

           0       0.82      0.89      0.85       105
           1       0.82      0.73      0.77        74

    accuracy                           0.82       179
   macro avg       0.82      0.81      0.81       179
weighted avg       0.82      0.82      0.82       179

随机森林(调参后) 混淆矩阵:
[[93 12]
 [20 54]]
随机森林(调参后) 模型评估指标:
准确率: 0.8212
精确率: 0.8182
召回率: 0.7297
F1 值: 0.7714
  • SHAP可解释性分析
#SHAP分析
explainer = shap.TreeExplainer(best_rf)
shap_values = explainer.shap_values(X_test)
# --- 1. SHAP 特征重要性条形图 (Summary Plot - Bar) ---
shap.summary_plot(shap_values[:, :, 0], X_test, plot_type="bar",show=False)
plt.title("SHAP Feature Importance (Bar Plot)")
plt.show()

# --- 2. SHAP 依赖图 (Dependence Plot) ---
print("--- 2. SHAP 依赖图 ---")
shap.dependence_plot(0, shap_values[:, :, 0], X_test, show=False)
plt.title("SHAP Dependence Plot")
plt.show()

# --- 3. SHAP 单个样本解释图 (Force Plot) ---
print("--- 3. SHAP 单个样本解释图 ---")
plt.figure(figsize=(15, 4))
shap.force_plot(explainer.expected_value[0],
                shap_values[0][:, 0],
                X_test.iloc[0,:],
                matplotlib=True,
                show=False,
                text_rotation=30)
plt.title("SHAP Force Plot for Single Sample", pad=20)
plt.tight_layout()
plt.show()

DAY 23 pipeline管道

知识回顾:

  1. 转化器和估计器的概念
  2. 管道工程
  3. ColumnTransformer和Pipeline类

作业:

整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline

(一)简介

在机器学习中,通常会按照一定的顺序对数据进行预处理、特征提取、模型训练和模型评估等步骤,以实现机器学习模型的训练和评估。为了方便管理这些步骤,我们可以使用pipeline来构建一个完整的机器学习流水线。

pipeline是一个用于组合多个估计器(estimator)的 estimator,它实现了一个流水线,其中每个估计器都按照一定的顺序执行。在pipeline中,每个估计器都实现了fit和transform方法,fit方法用于训练模型,transform方法用于对数据进行预处理和特征提取。

  • 转换器

转换器(transformer)是一个用于对数据进行预处理和特征提取的 estimator,它实现一个 transform 方法,用于对数据进行预处理和特征提取。转换器通常用于对数据进行预处理,例如对数据进行归一化、标准化、缺失值填充等。转换器可以在训练集上学习转换规则,并在训练集之外的新数据上应用这些规则。

常见的转换器包括数据缩放器(如StandardScaler、MinMaxScaler)、特征选择器(如SelectKBest、PCA)、特征提取器(如CountVectorizer、TF-IDFVectorizer)等

  • 估计器

估计器(Estimator)是实现机器学习算法的对象或类。它用于拟合(fit)数据并进行预测(predict)估计器的主要方法是fit和predict。fit方法用于根据输入数据学习模型的参数和规律,而predict方法用于对新的未标记样本进行预测。估计器的特点是有状态的,即它们在训练过程中存储了关于数据的状态信息,以便在预测阶段使用。

常见的估计器包括分类器(classifier)、回归器(regresser)、聚类器(clusterer)。

  • 总结

机器学习的管道(Pipeline)机制通过将多个转换器和估计器按顺序连接在一起,可以构建一个完整的数据处理和模型训练流程。在管道机制中,可以使用Pipeline类来组织和连接不同的转换器和估计器。优点在于:参数集在新数据集(比如测试集)上的重复使用。且代码看上去更加简洁明确。这也意味着,很多个不同的数据集,只要处理成管道的输入形式,后续的代码就可以复用。

Pipeline最大的价值和核心应用场景之一,就是与交叉验证和网格搜索等结合使用

(二)代码对比

  • 无pipeline代码
# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")
 
 # 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv('data.csv')    #读取数据


# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

# Years in current job 标签编码
years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)

# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名



# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
 
 # 连续特征用中位数补全
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]            #获取该列的众数。
    data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。

# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%测试集


from sklearn.ensemble import RandomForestClassifier #随机森林分类器

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
  • 有pipeline代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time # 导入 time 库
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False # 防止负号显示问题

# 导入 Pipeline 和相关预处理工具
from sklearn.pipeline import Pipeline #  用于创建机器学习工作流
from sklearn.compose import ColumnTransformer # 用于将不同的预处理应用于不同的列,之前是对datafame的某一列手动处理,如果在pipeline中直接用standardScaler等函数就会对所有列处理,所以要用到这个工具
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler # 用于数据预处理
from sklearn.impute import SimpleImputer # 用于处理缺失值

# 机器学习相关库
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import train_test_split # 只导入 train_test_split


# --- 加载原始数据 ---
data = pd.read_csv('data.csv')


# Pipeline 将直接处理分割后的原始数据 X_train, X_test
# 原手动预处理步骤 (将被Pipeline替代):
# Home Ownership 标签编码
# Years in current job 标签编码
# Purpose 独热编码
# Term 0 - 1 映射并重命名
# 连续特征用众数补全


# --- 分离特征和标签 (使用原始数据) ---
y = data['Credit Default']
X = data.drop(['Credit Default'], axis=1)

# --- 划分训练集和测试集 (在任何预处理之前划分) ---
# X_train 和 X_test 现在是原始数据中划分出来的部分,不包含你之前的任何手动预处理结果
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


# --- 定义不同列的类型和它们对应的预处理步骤 (这些将被放入 Pipeline 的 ColumnTransformer 中) ---
# 这些定义是基于原始数据 X 的列类型来确定的

# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)
object_cols = X.select_dtypes(include=['object']).columns.tolist()

# 有序分类特征 (对应你之前的标签编码)
# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意
# 这里的类别顺序需要和你之前映射的顺序一致
ordinal_features = ['Home Ownership', 'Years in current job', 'Term']
# 定义每个有序特征的类别顺序,这个顺序决定了编码后的数值大小
ordinal_categories = [
    ['Own Home', 'Rent', 'Have Mortgage', 'Home Mortgage'], # Home Ownership 的顺序 (对应1, 2, 3, 4)
    ['< 1 year', '1 year', '2 years', '3 years', '4 years', '5 years', '6 years', '7 years', '8 years', '9 years', '10+ years'], # Years in current job 的顺序 (对应1-11)
    ['Short Term', 'Long Term'] # Term 的顺序 (对应0, 1)
]
# 先用众数填充分类特征的缺失值,然后进行有序编码
ordinal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('encoder', OrdinalEncoder(categories=ordinal_categories, handle_unknown='use_encoded_value', unknown_value=-1))
])


# 分类特征 
nominal_features = ['Purpose'] # 使用原始列名
# 先用众数填充分类特征的缺失值,然后进行独热编码
nominal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) # sparse_output=False 使输出为密集数组
])


# 连续特征
# 从X的列中排除掉分类特征,得到连续特征列表
continuous_features = X.columns.difference(object_cols).tolist() # 原始X中非object类型的列

# 先用众数填充缺失值,然后进行标准化
continuous_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充缺失值 (复现你的原始逻辑)
    ('scaler', StandardScaler()) # 标准化,一个好的实践
])

# --- 构建 ColumnTransformer ---
# 将不同的预处理应用于不同的列子集,构造一个完备的转化器
preprocessor = ColumnTransformer(
    transformers=[
        ('ordinal', ordinal_transformer, ordinal_features),
        ('nominal', nominal_transformer, nominal_features),
        ('continuous', continuous_transformer, continuous_features)
    ],
    remainder='passthrough' # 保留没有在transformers中指定的列(如果存在的话),或者 'drop' 丢弃
)

# --- 构建完整的 Pipeline ---
# 将预处理器和模型串联起来
# 使用你原代码中 RandomForestClassifier 的默认参数和 random_state,这里的参数用到了元组这个数据结构
pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor), # 第一步:应用所有的预处理 (ColumnTransformer)
    ('classifier', RandomForestClassifier(random_state=42)) # 第二步:随机森林分类器
])

# --- 1. 使用 Pipeline 在划分好的训练集和测试集上评估 ---

print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---") 
start_time = time.time() # 记录开始时间

# 在原始的 X_train 上拟合整个Pipeline
# Pipeline会自动按顺序执行preprocessor的fit_transform(X_train),然后用处理后的数据拟合classifier
pipeline.fit(X_train, y_train)

# 在原始的 X_test 上进行预测
# Pipeline会自动按顺序执行preprocessor的transform(X_test),然后用处理后的数据进行预测
pipeline_pred = pipeline.predict(X_test)

end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒") # 使用你原代码的输出格式

print("\n默认随机森林 在测试集上的分类报告:") # 使用你原代码的输出文本
print(classification_report(y_test, pipeline_pred))
print("默认随机森林 在测试集上的混淆矩阵:") # 使用你原代码的输出文本
print(confusion_matrix(y_test, pipeline_pred))
--- 1. 默认参数随机森林 (训练集 -> 测试集) ---
训练与预测耗时: 1.8977 秒

默认随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.77      0.97      0.85      1059
           1       0.78      0.29      0.42       441

    accuracy                           0.77      1500
   macro avg       0.77      0.63      0.64      1500
weighted avg       0.77      0.77      0.73      1500

默认随机森林 在测试集上的混淆矩阵:
[[1023   36]
 [ 313  128]]

(三)尝试通用pipeline 

from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.compose import make_column_selector
from sklearn.base import BaseEstimator, TransformerMixin
 
# 定义数值型和类别型特征的预处理步骤
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),  # 填充缺失值
    ('scaler', StandardScaler())  # 标准化
])
 
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),  # 填充缺失值
    ('onehot', OneHotEncoder(handle_unknown='ignore'))  # 独热编码
])
 
# 使用ColumnTransformer组合不同类型的预处理
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, make_column_selector(dtype_include=['int64', 'float64'])),
        ('cat', categorical_transformer, make_column_selector(dtype_include=['object', 'category']))
    ])
 
# 创建完整的pipeline,包含预处理、特征选择和模型
full_pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor),  # 数据预处理
    ('feature_selection', SelectKBest(score_func=f_classif, k=10)),  # 特征选择
    ('classifier', RandomForestClassifier())  # 分类器
])
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# 加载数据
data = pd.read_csv('data.csv')
X = data.drop('Target', axis=1)
y = data['Target']

# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建pipeline(可替换为任意sklearn模型)
pipeline = create_ml_pipeline(
    estimator=LogisticRegression(max_iter=1000),
    k_features=10
)

# 训练和预测
pipeline.fit(X_train, y_train)
score = pipeline.score(X_test, y_test)
print(f"模型准确率: {score:.2%}")

 @浙大疏锦行

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值