💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要 :对电力系统各个元件的临界性进行量化对于系统的整体可靠性和管理至关重要。本文提出了一种基于交流的潮流元件重要性度量方法,同时考虑了多元件故障。该度量方法依赖于所提出的基于交流的连锁故障模型,该模型通过交流潮流和最优潮流分析,捕捉了支路过载、母线负荷削减和支路故障等情况。以IEEE 30、57和118节点电力系统作为案例研究,我们发现进行N-3分析就足以衡量一个母线或支路的重要性。观察发现,对于变电站母线,其重要性在统计上与其电力需求成正比,但对于发电厂母线则没有观察到这种趋势。与当今流行的其他基于可靠性、功能和拓扑结构的重要性度量方法相比,我们发现直流潮流模型虽然总体上与基准交流模型的相关性更好,但仍未能定位到一些关键元件。这是由于直流模型专注于有功功率而忽略了无功功率。所提出的重要性度量方法旨在向决策者提供复杂系统中的关键部件信息,同时改善连锁故障预防、系统备用设置和整体韧性。
关键词 :交流潮流;N-k可靠性;重要性排序;连锁故障;功能可靠性
一、交流潮流计算基础
1.1 数学模型
交流潮流计算通过非线性方程组描述电力系统的稳态运行状态,核心方程包括:
-
节点功率平衡方程:
-
线路模型:基于导纳矩阵YbusYbus描述线路参数与电压/相角的关系。
1.2 求解方法
- 牛顿-拉夫逊法:通过逐次线性化处理非线性方程组,具有二阶收敛速度,适用于大规模网络。
- 快速解耦法:利用功率方程解耦特性,将PQ分解为独立迭代过程,提升计算效率。
- 低代码控制器与MATLAB工具:如Matpower工具包实现了高精度潮流计算验证。
1.3 与直流潮流的区别
对比维度 | 交流潮流 | 直流潮流 |
---|---|---|
数学模型 | 非线性(需迭代求解) | 线性化近似 |
计算精度 | 高(含无功功率与电压幅值) | 低(仅考虑有功) |
应用场景 | 精确安全分析、N-k故障建模 | 快速预筛选 |
二、N-k故障模型的定义与挑战
2.1 模型内涵
N-k故障模型指在N个元件中任意k个同时失效的场景分析,旨在评估系统在极端条件下的安全性。其研究需解决:
- 组合爆炸问题:当k≥3时,故障组合数量呈指数增长。
- 级联传播效应:初始故障引发潮流转移,导致后续元件过载跳闸。
2.2 经典模型的局限性
- 忽略动态传播:仅考虑源发故障阶段,未模拟故障扩散路径,导致负荷损失低估(如IEEE39系统中经典模型负荷损失比实际低15%)。
- 静态安全约束:假设系统运行参数固定,未考虑调度调整对故障传播的抑制作用。
2.3 改进方向
- 多阶段双层优化模型:上层筛选源发故障,下层模拟调度调整以最小化负荷损失,并捕捉级联传播路径。
- 影响增量法:基于低阶故障结果快速推演高阶故障影响,减少计算量。
三、多元件故障的影响机制
3.1 连锁故障四阶段模型
- 初始扰动:如断路器失灵导致线路/变压器退出。
- 事故扩大:潮流转移引发保护误动,形成多米诺效应。
- 自组织临界态:系统失去稳定性,电压崩溃风险骤增。
- 系统崩溃:负荷损失超过阈值,导致大停电。
3.2 关键影响因素
- 网络拓扑脆弱性:关键线路/节点故障导致电网解列。
- 设备容量裕度:线路热稳定极限与电压调节能力决定故障扩散范围。
- 保护系统动作逻辑:过流保护与距离保护的配合影响跳闸序列。
四、现有模型与数学表达
4.1 双层优化模型
-
目标函数:
详细数学模型见第5部分。
-
约束条件:
4.2 两阶段网络流算法
- 网络流近似:将下层潮流模型转化为线性网络流问题,确定对偶变量边界。
- 混合整数规划:通过Gurobi求解器处理离散变量(如线路状态wl,s∈{0,1}wl,s∈{0,1})。
五、仿真工具与算法进展
5.1 主流工具
- MATLAB/Matpower:实现交流潮流计算与N-k场景生成。
- GPU并行加速:针对连锁故障仿真,采用CUDA架构提升计算速度(IEEE39节点系统加速12倍以上)。
- Gurobi优化器:用于求解混合整数规划模型,支持大规模变量处理。
5.2 创新算法
- 拼接求解法:将多个N-1问题拼接为单一大型潮流问题,减少迭代次数。
- 潮流转移影响因子法:筛选高关联线路组,提升N-k场景筛选效率。
六、结论
本文提出了一种基于交流(AC)的潮流元件重要性度量方法,考虑了多元件故障。基于交流潮流提出了一个连锁故障模型。本文所提出的这种重要性排序度量考虑了多个元件的故障,因为使用典型方法中单个元件的故障可能会导致排名并列,并且无法捕捉连锁故障对重要性量化的影响。为了说明所提出的度量方法,本文以IEEE 30、57和118节点系统作为功能案例研究。我们发现,一个功能母线的重要性在统计上与其相关支路的重要性水平之和成正比。同样清楚的是,变电站的需求是衡量变电站重要性的一个关键指标:高需求负荷的变电站通常排名较高。但对于发电厂,排名显示几乎没有任何相关性,因为它们在达到最大供应水平之前或甚至在最优潮流(OPF)调度下都有广泛的运行范围。连锁故障主导了发电厂的重要性,但这些影响是全球性的,而局部需求则主导了变电站的重要性。
本文还对基于交流的重要性度量和几种经典且广泛使用的功能和拓扑度量进行了比较。由于缺乏对物理潮流的考虑,基于拓扑的度量与基于交流的潮流度量在母线和支路重要性方面显示出低相关性,尽管它们的低计算成本仍然提供了有价值的见解。向前发展,这一发现强调了在追踪系统中的关键元件时进行系统动态分析(电力基础设施的潮流分析)的必要性。因此,基于直流的潮流度量作为一种折中方案出现,因为它与交流模型显示出良好的相关性,并且计算效率高,而增强网络流约束的CR方法也可能变得令人期望。然而,对于某些高需求母线,基于直流的度量倾向于高估它们的重要性,或者可能低估某些非需求母线的重要性。通过追踪连锁过程,发现这种不匹配是因为直流模型未能捕捉无功功率及其在连锁故障中的作用。
与一些当前的重要性度量相比,本文提出的重要性度量可以帮助决策者和公用事业公司在它们是多个偶然事件的一部分时更好地定位系统中的重要元件。这种方法有助于预防连锁故障、设置系统备用、安排维护以及提高可靠性。此外,应用了N-3分析,它为可行的偶然事件提供了实际的排名,并且在计算上并非不可行。然而,用于计算元件重要性的最佳N-k水平仍然未知。尽管N-3分析可能无法保证每个元件的重要性排名(除非尝试了所有k,这是不可行的),但提供了证据支持这一水平足以用于实际应用。找到最佳的k具有重要意义,它仍然是未来使用现代算法方法进行系统可靠性研究的一个课题。
七、未来研究方向
- 暂态-稳态耦合建模:融合电磁暂态过程与稳态潮流分析,提高仿真精度。
- 人工智能辅助:利用强化学习优化故障阻断策略。
- 极端天气适应性:量化气候因素对设备故障率的影响。
📚2 运行结果
运行结果数据:
仅包含运行数据,没包含可视化。
部分代码:
function [overloaded,Node_From,Node_To] = FindOverLoadBranch(results_pf)
overload_frac = 1;
[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
%%
Sf = sqrt(results_pf.branch(:,PF).^2 + results_pf.branch(:,QF).^2);
St = sqrt(results_pf.branch(:,PT).^2 + results_pf.branch(:,QT).^2);
%maximum apparent flow on branch in per-unit
S = max(Sf,St) / results_pf.baseMVA;
% line ratings in per-unit
r = results_pf.branch(:,RATE_A) / results_pf.baseMVA;
R = results_pf.branch(:, BR_R); % branch resistance
X = results_pf.branch(:, BR_X); % branch reactance
%% find overloaded branches
% indices of overloaded branches
overloaded = find(S./r > overload_frac);
% sort overloades from LARGEST to SMALLEST
[~,tmp] = sort(S(overloaded)./r(overloaded), 'descend');
overloaded = overloaded(tmp);
Node_From = results_pf.branch(overloaded,1);
Node_To = results_pf.branch(overloaded,2);
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取