光伏MPPT之变步长电导增量法:从原理到实现

光伏mppt,最大功率点跟踪, 变步长电导增量法,包括变步长电导增量和电导增量两种 模型采用三段式寻优控制变步长电导增量,跟踪效果良好 提供对应的word设计报告 文件版本有matlab22a和18b两种

在光伏系统中,最大功率点跟踪(MPPT)技术至关重要,它能让光伏电池始终工作在最大功率点附近,提升发电效率。今天咱就来唠唠其中的变步长电导增量法,这可是个优化MPPT性能的好法子。

电导增量法基础

电导增量法的核心依据是光伏电池的功率 - 电压曲线特性。大家都知道,光伏电池的输出功率$P$和输出电压$V$之间的关系是一条非线性曲线,存在一个最大功率点。电导增量法就是通过比较功率对电压的微分$\frac{dP}{dV}$与当前电导$G = \frac{I}{V}$ ($I$是电流)的增量$\frac{dG}{dV}$ 来判断工作点与最大功率点的相对位置。

假设光伏电池的输出功率$P = VI$,对$P$关于$V$求导可得:$\frac{dP}{dV} = I + V\frac{dI}{dV}$ 。当 $\frac{dP}{dV} = 0$时,就达到最大功率点。

用代码简单示意一下基础电导增量法的判断逻辑(以Python为例):

# 假设已经获取到当前电压V,电流I,以及电流对电压的微分项dI_dV
V = 10.0
I = 2.0
dI_dV = -0.1

dP_dV = I + V * dI_dV
G = I / V
dG_dV = dI_dV / V - I / (V ** 2)

if dP_dV > 0:
    if dG_dV > 0:
        print("向电压增大方向调整工作点")
    else:
        print("向电压减小方向调整工作点")
else:
    if dG_dV > 0:
        print("向电压减小方向调整工作点")
    else:
        print("向电压增大方向调整工作点")

在这段代码里,先计算出$\frac{dP}{dV}$和$\frac{dG}{dV}$ ,然后依据它们的正负来判断该朝哪个方向调整光伏电池的工作点,以便靠近最大功率点。

变步长电导增量法

传统的电导增量法在跟踪速度和精度之间存在一定矛盾。固定步长下,大步长跟踪速度快,但容易在最大功率点附近振荡,降低精度;小步长虽然精度高,但跟踪速度慢。变步长电导增量法就很好地解决了这个问题。

它采用三段式寻优控制。在远离最大功率点时,采用大步长快速接近;靠近最大功率点时,逐渐减小步长,提高跟踪精度;在最大功率点附近,采用极小步长,减少振荡。

下面用Matlab代码展示一下变步长电导增量法的大致实现(以Matlab 2022a版本为例,Matlab 2018b版本代码基本一致,部分函数可能存在兼容性差异):

% 初始化参数
V = 0; % 初始电压
I = 0; % 初始电流
step_size1 = 0.5; % 大步长
step_size2 = 0.1; % 中步长
step_size3 = 0.01; % 小步长
P_old = 0;
while true
    P = V * I;
    dP = P - P_old;
    dV = V - V_old;
    G = I / V;
    dG = (I - I_old) / V - I / (V * V) * dV;
    if abs(dP / dV) > 0.5 % 远离最大功率点
        V = V + step_size1 * sign(dP / dV);
    elseif abs(dP / dV) > 0.1 % 靠近最大功率点
        V = V + step_size2 * sign(dP / dV);
    else % 最大功率点附近
        V = V + step_size3 * sign(dP / dV);
    end
    % 更新电流、旧功率和旧电压
    I = get_current(V); % 假设这个函数能根据电压获取当前电流
    P_old = P;
    V_old = V;
    % 判断是否满足停止条件,这里简单假设功率变化小于某个阈值就停止
    if abs(dP) < 0.01
        break;
    end
end

在这段Matlab代码里,通过判断 $\frac{dP}{dV}$ 的大小来决定采用哪种步长调整电压$V$ 。远离最大功率点时,$\frac{dP}{dV}$绝对值较大,使用大步长$step\size1$快速调整;随着逐渐靠近最大功率点,$\frac{dP}{dV}$绝对值变小,改用中步长$step\size2$ ;在最大功率点附近,$\frac{dP}{dV}$接近0,采用小步长$step\_size3$ ,有效减少振荡,提高跟踪精度。

跟踪效果

实际应用中,变步长电导增量法的跟踪效果相当不错。相比传统固定步长的电导增量法,它能更快地跟踪到最大功率点,并且在最大功率点附近的振荡明显减小。无论是光照强度快速变化,还是温度等环境因素波动,三段式寻优控制的变步长电导增量法都能展现出良好的适应性,让光伏系统稳定高效地运行。

对应的Word设计报告与文件版本

如果大家想要深入了解变步长电导增量法的设计细节、理论分析以及完整的系统架构等内容,可以参考对应的Word设计报告。目前该报告有Matlab 2022a和2018b两种文件版本。Matlab 2022a版本在代码函数调用和绘图等方面可能会有一些新特性,而2018b版本则更适合一些配置稍旧的环境。大家可以根据自己的实际情况选择相应版本的文件进行参考和学习。

希望通过这篇博文,能让大家对光伏MPPT中的变步长电导增量法有更清晰的认识和理解,在实际项目中更好地应用这一技术。

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值