大家好,我是韩立。
写代码、跑算法、做产品,从 Java、PHP、Python 到 Golang、小程序、安卓,全栈都玩;带项目、讲答辩、做文档,也懂降重技巧。
这些年一直在帮同学定制系统、梳理论文、模拟开题,积累了不少“避坑”经验。
新学期开始,很多人卡在选题:想要新颖,又怕做不完。接下来我会持续分享一批“好上手且有亮点”的选题思路和完整开题答辩案例,给你参考,也给你灵感。关注我,毕业设计不再头秃!
该病虫害监测管理系统(聚焦棉铃虫对棉花的监测管理)核心功能可概括为:涵盖 9 大核心模块,包括支持管理员进行用户添加、删除及信息修改的用户管理,农田名称、地理位置等基础信息录入与修改的农田信息管理,记录病虫害种类、数量、分布情况的病虫害监测管理;
能依据监测结果提供防治方法与药剂推荐的防治建议,统计病虫害发生趋势、对比不同地区情况的统计分析,向管理人员发送预警与防治建议的报警提醒;
还具备监测数据定期备份与恢复以保障数据安全的功能,管理员分配用户访问及操作权限的权限管理,以及管理员设置系统参数、查看系统日志的系统设置,可满足农业技术人员、农民、研究人员等不同群体的病虫害监测与防治相关需求。
【开题陈述】
各位老师好,我是通信工程专业的H同学。我的毕业设计题目是《病虫害监测管理系统的设计与实现》。系统面向棉田管理者与农技人员,用浏览器即可完成操作,核心任务是把“田间拍照—AI识虫—专家开方—消息推送”串成闭环。
功能模块分9块:用户/权限、农田档案、虫情监测、防治建议、统计分析、报警提醒、数据备份、系统设置。
技术栈选的是前后端分离:前端Vue3+ElementPlus,后端SpringBoot+MyBatisPlus,数据库MySQL8,图像识别用YOLOv5s,服务器选Ubuntu+Docker一键部署。
【答辩开始】
评委老师:为什么专门挑“棉铃虫”做代表,而不是把所有害虫一次性做进系统?
答辩学生:棉铃虫在运城盆地暴发频率高、危害损失大,本地农户最关心;把它做成样板后,系统预留了“虫种字典”表,后续只要把新害虫标注数据按同样格式入库就能扩展,无需改代码。
评委老师:需求分析阶段你提到“和专家、农户调研”,具体拿到哪些可量化的指标?
答辩学生:共收回87份问卷,其中73%的农户要求“拍照后5秒内给出识别结果”,68%希望“预警短信在虫量达到防治阈值前12小时发出”,这两个数字直接变成了性能测试的硬性KPI。
评委老师:数据库里一张监测记录大概多大?如果2025年运城100万亩棉花全部接入,存储压力如何?
答辩学生:单条记录含图片索引约2 KB,按一亩地一周拍2张、年生长期25周算,100万亩一年产生5亿条、约1 TB原始数据。采用“原始图片OSS缩略图+本地数据分表+一年一归档”策略,硬盘成本控制在2万元以内,查询用分区索引保证毫秒级。
评委老师:YOLOv5s在棉田复杂光照下的识别准确率是多少?如果遇到粘连虫体怎么解决?
答辩学生:用自采的4200张田间图像做迁移训练,MAP@0.5达到88.7%;粘连虫体先通过形态学分割成候选框,再送入分类器二次确认,可把漏检率从12%降到4%。
评委老师:前端Vue3打包后体积过大,首次打开慢,你准备如何优化?
答辩学生:启用Vite的按需引入和动态import,把ElementPlus组件、ECharts图表单独拆chunk;图片用WebP+懒加载;再加Nginx开启Brotli压缩,首屏时间从3.8 s降到1.4 s。
评委老师:系统报警依赖短信,但农村信号时常不稳定,有没有备用通道?
答辩学生:设计了“短信+微信小程序订阅消息+离线语音电话”三级通道。信号差时,小程序走微信自有网络;极端情况下,后台调用阿里云语音通知,确保12小时内送达率≥95%。
评委老师:毕业设计时间只有16周,如果2025年6月前YOLO模型精度仍达不到90%,你的底线交付方案是什么?
答辩学生:底线是“人工审核+半自动”。系统先给出机器结果,农户在小程序里点“对”或“错”,后台把纠错数据立即回写到训练集,两周迭代一次;即使精度止步88%,也能通过众包审核把最终决策准确率拉到95%,不影响论文结论和系统上线。
【评委总结】
H同学准备充分,对数据规模、性能瓶颈和 fallback 方案都有量化答案,体现出工程思维。若能在正式验收前把识别精度再提升2%,系统就更具推广价值。总体同意开题,请按计划推进。
以上是H同学的毕业设计答辩过程,如果你现在还没有参加答辩,还是开题阶段,已经选好了题目不知道怎么写开题报告,可以下面找找有没有自己符合自己题目的开题报告内容,列表中的开题报告都是往届真实的开题报告可参考。