自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 OpenAI员工揭秘AI岗的“通关密码”:面试不是考试,是表演!

最近,看到一位新晋员工的分享,深受震撼。在经历数轮严苛面试后,他最终拿到研究岗的 offer,并写下了一篇“万字面试圣经”,总结了 AI 岗面试的底层逻辑。表演什么?表演你的技术、你的故事、你的领导力,甚至你的真诚。而能否拿到 offer,往往取决于你是否掌握了这场“表演”的技巧。下面,我整理了他的一些核心经验,分享给正在秋招/转岗的朋友。准备面试,可能是人生中回报率最高的事情。这些准备不仅能帮你拿到面试机会,更会反过来锻炼你真正的硬实力。面试官嘴上说“随便聊聊”,心里早已默默打分。

2025-09-16 10:11:16 742

原创 为什么AI简历优化这么流行?真的很好用?

【AI简历优化为何流行?】招聘流程已变,第一关是AI筛选系统(ATS)。传统简历因关键词不匹配常被淘汰,AI优化能精准匹配岗位要求,数据显示可使面试邀约率提升3.2倍。其核心价值在于:自动提取JD高频词、优化表达方式、快速适配不同公司。但需注意,AI仅助力简历通过率,面试仍需真实能力支撑。目前工具如injobAI可3分钟生成匹配简历,并提供模拟面试功能。本质上,AI优化是应对现代招聘规则的效率工具,求职者应善用技术优势,同时夯实自身实力。(149字)

2025-09-15 11:12:56 884

原创 AI求职黄金指南

【摘要】AI时代非技术岗突围指南:本文揭秘互联网大厂岗位红黑榜(推荐产品经理、运营等前台岗,慎选中后台岗),指出AI是确定性风口,重点布局垂类模型和应用层。为转行者提供三步策略:定细分赛道(如AI+金融)、做实战项目、精准投递匹配公司。特别解析AI产品经理核心能力(技术边界感+用户思维),建议通过体验AI工具、制作作品集积累经验。文末介绍创新产品"AI面试官VS求职者"模拟系统,帮助用户提升面试能力。(149字)

2025-09-14 14:45:34 1026

原创 AI对抗:「AI面试官」 VS「 AI 求职者」、探索面试最优解

摘要:文章提出用AI面试官与AI求职者对抗模拟真实面试场景,以解决面试中的信息不对称问题。AI面试官基于大厂考核标准,从五个维度评估求职者;AI求职者则模拟用户简历进行实战演练。这种"军事演习"式对抗能帮助求职者透视面试逻辑、优化回答策略、精准匹配岗位要求,在真实面试前获得上帝视角的学习机会。(148字)

2025-09-13 21:27:23 554

原创 Agent的核心其实还是一种提示词工程

摘要:大模型的核心运作依赖于提示词处理。Agent(智能代理)通过提示词实现规划、记忆、工具调用和行动四大功能:1)规划提示词指导任务拆解;2)记忆提示词串联会话上下文;3)工具提示词实现API调用;4)行动提示词规范输出格式。每次对话本质都是将Agent要素转化为特定提示词输入,通过模型的自回归计算生成响应。这种提示词驱动机制使模型具备任务处理、环境感知和持续学习的能力,形成完整的智能体工作闭环。(149字)

2025-09-11 18:43:51 696

原创 提示词工程:Prompt 基本结构介绍与使用

摘要: Prompt提示词工程是优化大语言模型输出的关键技术。一个有效prompt包含五大要素:明确指令、输入数据、背景信息、输出格式和角色设定。其常用结构为"指令+输入+背景+输出要求",通过清晰指示(如"总结""解释")、提供必要内容(如待分析的文本)、补充背景(如受众为小学生)和规范格式(如Markdown表格),可显著提升模型响应质量。例如,要求生成MySQL建表语句时需提供字段细节,解释科学概念时需指定受众认知水平。精准的prompt设计

2025-09-08 10:23:51 661

原创 小团队做 Agent 应用的阶段性反思:从平台到工具、再到为结果负责

《小团队AI产品复盘:从技术平台到价值交付的转型》摘要:本文复盘了小团队在2023年至今开发的3类AI产品经验。首款Mass平台虽技术领先,但遭遇用户使用门槛高、需求演变为定制开发的问题;第二款场景化AI说明书应用虽提升体验,但陷入工具价值质疑困境。最终团队转向InJobAI求职评估系统,通过对面试结果直接负责,构建了包含题库锚点、岗位画像和多Agent协同的核心能力。关键认知包括:技术可行性≠产品可行性,场景化体验≠价值变现,唯有对用户结果负责才能突破工具局限。目前产品聚焦高价值密度的人才测评赛道,通过标

2025-09-07 22:04:06 963

原创 大模型实践分享:在做rag时、如何处理文档中的表格

本文分享了RAG项目中处理表格数据的解决方案。针对表格数据检索后大模型理解困难、合并单元格导致数据混乱等问题,作者提出将表格转换为HTML格式的三步法:1)读取文档表格并识别,2)转换为保留原格式的HTML(含合并单元格处理),3)拼接成新文档进行向量化。该方法有效解决了表格信息提取准确性和大模型理解问题,并展示了实际问答效果。文末还介绍了团队开发的AI模拟面试产品,邀请读者参与内测。

2025-09-04 11:10:18 671

原创 Injob in产品实践:Agent 效果差?先别怪模型——可能是你的“上下文”被污染了

摘要: 构建高效Agent的关键在于优化上下文管理,而非单纯依赖模型能力。常见问题包括上下文污染、过载和工具混淆,导致信息混乱、决策失误。以InjobAI简历生成为例,提出四大策略:1)写入策略:动态加载关键信息,保存中间结果;2)选择策略:动态筛选高优先级内容;3)压缩策略:摘要化冗余信息;4)隔离策略:通过多Agent架构隔离任务,避免交叉污染。实施这些工程化方案可显著提升Agent的稳定性和可靠性。

2025-09-03 15:40:37 1250

原创 纯模型对话、单agent模式、(manus)三元协同agent模式有什么不同

本文探讨了AI写简历的三种模式演进:从纯模型对话的不稳定、易幻觉,到单Agent流程的初步结构化但仍存在角色混淆,最终发展为三元协同多Agent系统(对话-计划-执行)。这种分层架构通过分工协作实现了更稳定、专业的简历生成:对话Agent采集需求,计划Agent制定结构,执行Agents模块化写作。相比前两种模式,三元架构具有纠错成本低、岗位贴合度高、用户体验友好等优势,形成了一条专业化"简历流水线",显著提升了生成质量和稳定性。

2025-08-27 08:30:00 993

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除