一、引言
京东商品评论数据是电商运营、市场分析、用户调研的重要数据源。通过 API 接口获取评论数据,可实现自动化分析用户反馈、挖掘产品痛点、监控竞品动态等场景。本文旨在介绍京东评论数据接口的基本信息及 Python 调用方法。
二、接口概述
1. 接口功能
- 获取指定商品的评论列表:包括用户评分、评论内容、发布时间、追加评论、图片 / 视频附件等信息。
- 支持分页查询:通过页码参数获取多页评论数据。
- 支持筛选条件:可按好评 / 中评 / 差评、有无图片等维度过滤评论。
2. 接口地址与请求方式
- URL 示例:
api.comment/getCommentList
- 请求方法:
GET
或POST
(具体以开放平台文档为准)。
3. 请求参数
参数名 | 类型 | 必填 | 说明 |
---|---|---|---|
skuId | string | 是 | 京东商品 SKU(商品唯一标识,可从商品详情页 URL 中获取) |
page | int | 是 | 页码,从 1 开始 |
pageSize | int | 否 | 每页评论数(默认 20,最大 50) |
sortType | int | 否 | 排序方式(1 = 按时间倒序,2 = 按评分排序等,具体值参考接口文档) |
scoreType | int | 否 | 评分类型(0 = 全部,1 = 好评,2 = 中评,3 = 差评) |
hasImage | int | 否 | 是否包含图片(1 = 有图片,0 = 无图片) |
4. 响应数据格式
json
{
"code": 200,
"msg": "success",
"data": {
"total": 1000, // 总评论数
"page": 1, // 当前页码
"pageSize": 20, // 每页数量
"comments": [
{
"userName": "用户昵称",
"score": 5, // 评分(1-5分)
"content": "评论内容...",
"createTime": "2025-05-15 14:30:00",
"images": ["img1.jpg", "img2.jpg"], // 图片列表
"reply": "商家回复内容...", // 商家回复
"is追评": true, // 是否为追评
"追评内容": "追评内容..."
}
]
}
}
三、Python 请求示例
python
import requests
import hashlib
import time
# API 接口地址
api_url = "c0b.cc/R4rbK2"
# 配置参数
APP_KEY = "your_app_key"
APP_SECRET = "your_app_secret"
SKU_ID = "12345678" # 替换为目标商品SKU
PAGE = 1
def generate_sign(params, app_secret):
"""生成签名(示例为MD5签名,实际需按京东要求处理)"""
params = sorted(params.items(), key=lambda x: x[0])
query_str = "&".join([f"{k}={v}" for k, v in params])
sign = hashlib.md5((query_str + app_secret).encode()).hexdigest()
return sign
# 构造请求参数
params = {
"method": "jd.comment.get",
"app_key": APP_KEY,
"skuId": SKU_ID,
"page": PAGE,
"format": "json",
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"v": "1.0"
}
# 解析响应
if response.status_code == 200:
result = response.json()
if result.get("code") == 200:
comments = result["data"]["comments"]
for comment in comments:
print(f"用户:{comment['userName']}, 评分:{comment['score']}, 内容:{comment['content']}")
else:
print(f"请求失败:{result['msg']}")
else:
print(f"HTTP请求失败,状态码:{response.status_code}")
存储和处理数据:将解析后的数据存储在所需的系统中,如数据库、数据仓库或云存储等。对数据进行后续处理和分析,如情感分析、词云生成、趋势分析等。
通过以上步骤,可以高效、合规地获取京东商品详情页面的评论数据,为市场调研、竞品分析、价格监测等工作提供有力支持。