基于深度学习安卓端烟雾和火焰检测开发总结

本文介绍了基于深度学习的安卓烟雾和火焰检测应用,实现实时检测,高识别率。训练过程中采用mtcnn进行三类检测,针对烟雾无明确形状的特性进行优化。开发中面临误检和漏检问题,通过增加负样本多样性及调整nms阈值来改善。数据集来源于袁非牛教授,使用tensorflow训练,MNN推理。
摘要由CSDN通过智能技术生成

简介

在安卓下视频实时检测、基于深度学习,同时检测出烟雾和火焰(apk中红框为火焰灰框为烟雾)。在高通820手机上无烟雾火焰时20帧左右,大量烟雾火焰时2帧左右,基本能达到实时,可以用实际使用。

DEMO下载

csdn下载
欢迎测试技术交流

识别率


高于传统检测方法,不差于目前公开的深度学习同类算法

训练


同车牌一样还是用mtcnn来做检测,因为复杂度高于车牌检测所以不一样的是这里是完整的pro三层级联,图片输入大小也和标准mtcnn一致
1、因为数据集没有bbox框信息的原因所以没有标准mtcnn的bbox,lan输出,实际上烟雾不同于人脸也没有明确的形状界定所以bbox回归意义确实不大,不过引出的问题是由于没有bbox回归导致bbox之间不会相互靠近导致的nms抑制的框太少从而导致bbox过多
2、标准mtcnn是分两类人脸和非人脸,这里因为需要同时检测烟雾和火焰就将其修改为三类输出,烟雾,火焰,neg
3、加入dropout,将onet第一层由conv由3x3改为5x5扩大感受野
4、同样因为数据集没有bbox框信息onet和rnet没办法使用hard sample进行训练
剩下的训练和标准mtcnn训练基本一致。


难点


在于烟雾的特点,它没有具体形状,不像人脸和车牌

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值