自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(391)
  • 资源 (6)
  • 收藏
  • 关注

原创 如何获取交通大数据

关注微信公众号《当交通遇上机器学习》后台回复“数据”即可获取:数据包括出租车GPS数据样例,地铁AFC刷卡数据样例,公交刷卡数据样例,共享单车订单数据(包括起终点,即租车还车位置的经纬度),同时还提供了高达175G的四个月的滴滴GPS数据和滴滴订单数据的获取方式,以及从数据处理(Oracle数据库)、模型构建(机器学习)、编程实现(python)到可视化(ArcGIS)等一系列视频教程。...

2019-05-11 02:01:41 10927 4

原创 AutoTimes:通过大型语言模型实现的自回归时间序列预测器

鉴于时间序列与自然语言具有相似的序列结构,越来越多的研究表明,利用大型语言模型(LLM)进行时间序列建模是可行的。如图 3 所示,现有主流的 LLM【6, 36】具备根据前序 token预测下一个 token 的能力,本文在 AutoTimes 中完全复用 LLM 这一特性,以一致的方式迭代生成任意长度的预测。为此,本文将时间序列 token 定义为单一变量上的连续非重叠片段,这被视为 LLM 预测器的通用 token,既能覆盖序列变化,又避免过长的自回归路径。欢迎关注微信公众号《当交通遇上机器学习》!

2025-08-01 09:49:40 890

原创 重磅发布 | 《Artificial Intelligence for Transportation》新刊上线!

该框架通过实现车辆与智能基础设施的实时通信,支持系统级的协同感知,融合多种策略(如早期、中期和后期感知融合)以及协调的规划与控制。同时,CDA.AI 实现了与大规模视觉-语言模型(VLM)和“视觉-语言-动作”(VLA)系统的闭环集成,从而增强了系统的推理能力并将更高层次的智能注入 CDA 的感知与决策流程中。在识别当前基于 LLM 的交通研究方案存在的问题基础上,此综述进一步描绘了未来研究的发展路径,强调了 LLM 在构建新一代“网络-物理-社会”融合出行生态系统中的核心地位。

2025-07-30 09:30:38 1027

原创 基于条件扩散模型的图像压缩框架

本文涉及多个数据集和图像质量评估指标的广泛实验表明,本文的方法比基于gan的模型报告的FID分数更高,同时在几个失真指标上也比基于vae的模型具有竞争力。该文章从基于深度学习的图像编码框架,受到扩散模型的启发,设计了一种新的图像编码框架,模型的性能可以调整到感兴趣的感知度量。并且实验表明,在多个数据集和图像质量评估指标中,本文的模型比基于gan的模型报告的FID分数更高,同时在几个失真指标上也比基于vae的模型具有竞争力。下图定性地表明,与基于vae的编解码器相比,得到的解码图像显示的过度平滑伪影更少。

2025-07-18 10:54:06 882

原创 EUICN:面向水下图像的高效压缩神经网络

然后,本文开发了一个双空间注意模块(DSAM),将IF和CF的双空间信息进行整合,生成一个特征保留掩模(M),将M与量化后的CF相乘,在每个细节大小不同的区域自适应保留合理数量的量化特征然后,将保留的CF发送到所提出的混合熵编码(MEC)模块,以估计进行算术编码(AE)的概率。然后利用CF∈R^(M×H/16×W/16)(M=192,H=256,W=256)计算和这400个特征点的距离,选择距离最近的特征点对应的特征Iuniversal∈R^(M×H/16×W/16),如式所示。

2025-07-13 08:21:36 946

原创 MUDDFormer:通过多路动态密集连接打破 Transformer 中的残差瓶颈

在本研究中,本文提出了多路动态密集连接,这是一种简单而有效的策略,用于克服残差连接的不足。不同于现有采用静态与共享权重的密集连接方法,MUDD 根据每个序列位置的隐藏状态,以及Transformer模块中解耦后的每个输入流(query、key、value 或 residual),动态生成连接权重。大量实验表明,MUDDFormer在多种模型架构和规模下,在语言建模任务中显著优于标准Transformer,并能在仅使用约1.8×–2.4×计算资源的前提下,达到相当于更大模型的性能。MUDD 连接有望成为。

2025-07-11 16:24:13 726

原创 团队研究成果|基于物理信息引导的突发事件期间的城市轨道交通短时OD需求预测

本论文于2024年发表于中科院院刊《Engineering》上。该论文旨在研究突发事件期间城市轨道交通OD需求预测问题,通过搭建物理信息引导的自适应图时空注意力网络(PAG-STAN),有效克服突发事件下OD需求任务所面临的数据实时可获得性、数据稀疏性、数据高维性以及突发事件下外部因素的影响等问题,从而实现突发事件下城市轨道交通OD需求的精确预测。最后,以南宁市城市轨道交通客流数据为例设计的数值实验验证了模型在突发事件下的OD需求预测性能;以北京市城市轨道交通客流数据为例设计的数值实验验证了模型在常规场景下

2025-07-09 16:23:57 928

原创 团队研究成果|大型活动期间城轨短时客流预测

在大型活动期间,目标站点的出站客流将显著增加,这种增加是由其余站点的突发进站客流引起的。个预测时间范围内均能够精准预测大型活动期间目标站点客流的上升趋势,有助于确定突发客流的发生时间,应对大型活动期间客流的突然增加,且预测效果在可接受范围内。每一场大型活动提取的客流数据为活动举办当天所有时间段的客流数据,并将不同大型活动的客流数据进行拼接,形成完整的大型活动客流数据。)本研究将其余站点的进站客流视为目标站点出站客流激增的原因,且能够确定突发客流的发生时间,为大型活动期间的客流预测提供了新思路。

2025-06-30 10:35:26 1014

原创 “预测-优化”框架中的泛化界限

尽管在解决问题时无法知晓确切的成本,但可以通过机器学习模型预测边成本,该模型基于包含特征(一天中的时间、天气等)和边成本(从应用程序数据中收集)的训练数据进行训练。从根本上说,一个好的预测模型能够诱导优化问题找到好的最短路径,这是通过真实的边成本来衡量的。本文假设在求解优化问题时,目标成本向量是未知的,而是通过一个将特征映射到成本向量的预测模型来预测的。在这种环境中,一个自然的损失函数是考虑由预测参数所诱导的决策的成本,而不是参数的预测误差。损失函数的背景下提供泛化界限,该函数是利普希茨连续的。

2025-06-23 08:36:17 916

原创 连接预测和决策:数据驱动优化的进展和挑战

文章信息论文题目为《Bridging prediction and decision: Advancesand challenges in data-driven optimization》,该文于2025年发表于《Nexus》期刊上。摘要数据驱动方法通过将预测与决策相结合,彻底改变了传统的优化方法。文章探讨了三种关键方法 —— 顺序优化、端到端学习和直接学习 —— 的理论基础、优势、最新进展和局限性,重点介绍了它们在电网调度、运营管理和智能自主控制中的实际应用。并且进行了多维度比较,随后讨论了数据中心方法

2025-06-18 18:34:51 653

原创 一种高效船舶检测的“半智能预测后优化”方法

1 文章信息文章题为“A semi-“smart predict then optimize”(semi-SPO) method for efficient ship inspection”,该文于2020年发表至“Transportation Research Part B”。文章的核心观点是提出了一种半“智能预测后优化”(semi-SPO)方法,旨在提高港口船舶检查的效率。这种方法特别关注如何利用有限的检查资源来识别船舶的不符合规定项。2 摘要。

2025-06-13 17:05:41 306

原创 QVRF:可变码率编码框架

大量实验表明:在现有的基于固定比特率的变分自编码器(VAE)方法中引入 QVRF 后,能够在一个模型中实现连续范围的可变比特率,且不会带来明显的性能损失。本文通过大量实验验证了提出框架的有效性,并证明在现有的基于固定比特率的变分自编码器(VAE)方法中引入 QVRF 后,能够在一个模型中实现连续范围的可变比特率,且不会带来明显的性能损失。(1)本文提出了一种量化误差感知的可变比特率框架(QVRF),通过引入一个一元量化调节器α,在单一模型中实现了大范围的可变比特率。的高斯熵估计基本保持不变。

2025-06-04 22:15:43 807

原创 STP-TrellisNets+:基于时空并行网格的轨道交通多步客流预测

为了解决上述多步客流预测问题,本文提出了一种新的深度学习框架spatial - temporal Parallel TrellisNets+ (STP-TrellisNets+),如图3所示,它由一个时间模块基于紧密周期性TrellisNets的编码器-解码器(CPTrellisNetsED),一个空间模块基于图卷积TrellisNets的编码器-解码器(GC-TrellisNetsED)和一个聚合模块Output组成。即一个车站的客流与历史客流上的相关,又与其他台站的客流有空间上的相关。

2025-06-01 08:40:16 930

原创 NUS新加坡国立大学招聘大模型与统计建模方向博士后

(Webpage:NUS。

2025-05-30 18:42:58 190

原创 基于核概率矩阵分解的矩阵补全

文章信息本论文是一篇2012年发表在《Proceedings of the 2012 SIAM International Conference on Data Mining》上关于概率矩阵分解的文章,题目为《Kernelized Probabilistic Matrix Factorization Exploiting Graphs and Side Information》。摘要。

2025-05-26 07:50:49 279

原创 团队成果|城市轨道交通短时交通客流OD预测

然后,更多的注意力资源被投入到这一领域,以获得关于目标的更详细的信息。为了解决数据的维数和稀疏性问题,本文还首次提出了掩码损失函数,这有助于更好地处理高维数据和时空稀疏性。这意味着我们处理的数据非常复杂,需要一种高效的方法来处理这种高维数据。这意味着我们需要开发一种方法,可以在数据不完整的情况下进行准确的预测。值会对模型的性能产生负面影响,因为它们的缺乏规律性会增加预测的难度。然而,可以观察到,即使在显著变化的情况下,也可以捕捉到趋势。从图中的预测结果可以看出,对于深度学习模型来说,并不是越复杂越好。

2025-05-18 23:25:56 946

原创 一种用于处理非凸问题的预测+优化的分而治之算法

在本项工作中,本文提出了一种基于转换点的新型分而治之算法,用于推理精确优化问题,并利用优化损失来预测系数。需要注意的是,DNL和DP之间表现出相同的性能是意料之中的,因为它们都使用了相同的转换点。然而,最先进的组合求解器通常比动态规划的解更快,而在许多无法扩展动态规划解的情况下,专用求解器的扩展性更好。此外,对于任何新的问题和约束集,都需要重新制定动态规划的解,这会减慢该框架应用于新问题的速度。本文证明,本文的分而治之的方法在背包基准测试中取得了与动态规划模型相同的结果,并且在更大规模问题上扩展性更好。

2025-05-13 17:51:21 870

原创 团队研究成果|多模式交通系统短时客流预测:一种基于Transformer和残差网络的多任务学习方法

|文章信息本论文于2023年发表于期刊《Information Sciences》。该论文旨在研究一定区域范围内多模式交通系统短时客流预测问题,文章提出一种基于多任务学习的预测模型实现区域级多模式交通短时客流预测,分别预测不同交通模式的未来进站客流。所提出的模型在北京真实数据集上进行测试,通过选择西直门和望京两个区域的数据集进行验证。进行了多项实验分析协同预测不同交通方式的优势以及不同交通方式客流数据之间的时空交互关系。关键词:多模式交通系统、短时客流预测、多任务学习、Transformer、深度学习 |摘

2025-05-06 17:10:40 1109

原创 团队研究成果|基于Semi-Conv-Transformer模型的新线客流预测

为解决这些挑战,作者提出了一种将进站客流特征分解为趋势特征与规模特征的方法,并基于半监督学习与深度学习神经网络构建了Semi-Conv-Transformer模型用于新线客流预测。其中,Transformer层用于提取POI的全局特征,CNN层负责捕捉POI的局部特征,而全连接层则学习特征提取后的POI数据与客流数据间的复杂关联。提出新研究框架:针对新线客流预测的特点,将客流分解为规模特征(日客流量)和趋势特征(时段分布),通过深度学习模型分别预测这两个分量,最终合成进站流预测结果。

2025-05-05 21:23:58 808

原创 团队研究成果|基于时空网络的短时客流OD预测模型

但是,由于计算资源的限制,将其所有的历史OD数据都用上是不可能的,也是没有必要的,通常在短时OD预测中,未来OD数据主要存在两种主要的时间依赖性:趋势性(待预测OD受过去几个时间间隔内历史OD的影响)以及周期性(待预测OD在几天或者几周前同一时刻的OD数据的影响)。(1)本文加入了OD对之间的趋势关系图用于描述OD对之间的空间关系,在此基础上基于K-means聚类对OD对进行了分类研究,结果表明:不同的OD对之间确实存在该空间关系,加入该空间关系的深度学习框架可以提高模型预测的准确度。

2025-05-04 19:55:38 753

原创 团队研究成果|基于时空多任务学习的节假日期间城市轨道交通短时进出站客流预测

STMTL框架如图所示。异质性则体现在进出站客流在时空分布上的差异性,例如在早高峰期间,通勤站C的进站客流远高于出站客流,而在晚高峰期间则相反。与Transformer中自注意力机制不同,交叉注意力中Q和K分别来源于不同的输入(即进出站客流),关注的是空间维度下不同车站之间的交互,而非时间维度上的依赖关系。,在此基础上,CAB以进站客流为例,通过线性变换生成查询(Q)、键(K)、值(V)向量,并利用缩放点积注意力机制计算进出站客流在不同车站之间的交互注意力,获取来自出站客流对进站预测有价值的共享特征表示。

2025-05-03 07:31:52 954

原创 团队研究成果|基于计算机视觉的轨道交通站内火灾检测与定位

点击蓝字 / 关注我们导 读 本论文于2024年发表于《交通运输系统工程与信息》上。该论文旨在及时有效地处理轨道交通站内火灾事件,提出基于计算机视觉的站内火灾检测与精细化火灾定位模型(Fire-Detect)。该模型可在常态情况下以较低的资源消耗实时监测站内情况,出现火灾或烟雾时才触发定位于报警系统。通过数据处理以模拟火灾或烟雾场景进行了实验研究,结果表明该模型的高效性和精确性。关键词 —作 者 / 张金雷,杨健,刘晓冰,陈瑶,杨立兴,高自友标 题 / 基于计算机视觉的轨道交通站内火灾检测与定位.文献来源

2025-04-29 16:41:46 776

原创 基于时空多任务学习的节假日期间城市轨道交通短时进出站客流预测

STMTL框架如图所示。异质性则体现在进出站客流在时空分布上的差异性,例如在早高峰期间,通勤站C的进站客流远高于出站客流,而在晚高峰期间则相反。与Transformer中自注意力机制不同,交叉注意力中Q和K分别来源于不同的输入(即进出站客流),关注的是空间维度下不同车站之间的交互,而非时间维度上的依赖关系。,在此基础上,CAB以进站客流为例,通过线性变换生成查询(Q)、键(K)、值(V)向量,并利用缩放点积注意力机制计算进出站客流在不同车站之间的交互注意力,获取来自出站客流对进站预测有价值的共享特征表示。

2025-04-28 21:04:18 873

原创 “交通·未来”第32期:深度学习与交通模型相结合:一种基于计算图的学习框架

该学习模型通过引入巢式Logit(Nested Logit, NL)模型,进一步校准与铁路线路规划关键属性(如班次频率、票价水平、旅行时间)相关的可解释参数,从而实现对政策变化的敏感分析。与传统离散选择模型不同,本文所提出的估计框架引入了基于线路的容量约束,以避免特定线路出现乘客过载问题,并协调不同观察变量之间的偏差。为验证方法的可行性,本文在京沪高铁走廊上进行了实证研究。,上次的活动还是在2023年6月份,时隔近两年,2025年,新起航新征程,我们继续前行(希望这次启程能腾出更多的时间来做这件事情~)。

2025-04-27 21:22:12 974

原创 团队研究成果|基于物理信息深度学习的交通状态估计

通过在不同稀疏数据情境下进行大量的实验研究,利用美国101高速公路的NGSIM数据,深入探讨了PIDL方法在不同交通流场景中的应用,结果验证了该模型的高效性和精确度。本文的研究不仅探讨了数据稀疏性对交通状态估计的影响,还通过应用PIDL方法取得了显著的成果,具有重要的实际意义,特别是在实际交通流控制和管理中的应用。通过该方法的研究和应用,我们可以更好地理解数据驱动方法和模型驱动方法的优势与劣势,以及它们在交通状态估计中的作用。检测器数量代表可用数据的规模,检测器数量越多,越有利于估计整个路段的交通状态。

2025-04-26 18:42:34 1263

原创 TimeXer: 利用外生变量增强Transformer在时间序列预测中的应用

基于注意力机制的工作维度,现有的基于变压器的方法大致可以分为面向块的模型和面向变量的模型。而面向变量的模型,如iTransformer,成功地推理变量之间的关系,通过考虑每个时间序列作为单个时间步长并应用不同的变量令牌来推理这些变量之间的关系。本文包括了九个最先进的深度预测模型,包括基于变压器的模型:iTransforme,PatchTST,Crossformer,Autoformer,基于 CNN 的模型:TimesNet,SCINet,以及线性基础模型:RLinear,DLinear,TiDE。

2025-04-23 13:11:56 1011

原创 通过神经算子的主动学习发现和预测极端事件

该模型具有“模型不可知性”(model-agnostic)特性,能够在不依赖具体物理模型的前提下,通过主动选择用于量化极端事件的数据,实现对无限维非线性算子的高效近似。为此,本文采用的DNO模型(如DeepONet),适用于处理无限维系统,并作为罕见事件建模的理想代理模型。本文提出的核心框架为:将深度神经算子(Deep Neural Operator, DNO)作为替代模型,并结合贝叶斯实验设计策略,以主动学习的方式在高维输入空间中识别极端事件,模型框架如图1。,尚缺乏严格的理论收敛性分析。

2025-04-18 15:23:18 829

原创 基于动力学的时空预测扩散模型

用于时序预测,它改进了传统的扩散模型方法,通过设计一个插值网络代替扩散模型加高斯噪声的正向操作,在反向过程中,它设计了一个预测网络进行多步预测。如图所示,上面展示了如何通过一般的扩散模型对时序数据进行预测,首先在正向过程中,通过增加高斯噪声将时序数据转化为高斯噪声,在反向过程中,通过条件对高斯噪声进行逐步还原得到我们需要预测的未来一段时间的时序数据。此外,与传统的基于高斯噪声的扩散模型相比,其中一个可能的原因是,视频扩散模型的主干网络的通道维度会随着训练跨度的增加而变大,导致问题的维度和复杂性大幅增加。

2025-04-16 13:00:34 716

原创 一种用于自由浮动系统中动态绿色自行车重新定位的智能预测优化方法

所提出的方法在中国深圳的真实共享自行车出行数据上进行了测试,结果表明,通过同时重新定位运营中的自行车和不可用的自行车,可以将重新定位距离和碳排放成本分别降低。在静态自行车共享重新定位问题中,假设在重新定位过程中,一个区域内的自行车不可用,即每个区域的自行车数量只能由员工而不是用户改变,因此这种重新定位过程通常发生在夜间,当时自行车共享出行的流量相对较小。这一措施提高了系统的效率,并确保了自行车在最需要的地方可用,减少了用户的等待时间,提高了自行车共享出行的服务质量。的共享自行车需要大修。

2025-04-14 08:22:47 801

原创 景观替代:部分信息下数学优化的学习决策损失

为了设计这样的优化器,我们考虑以下设置:假设对于训练实例,我们可以访问完整的问题描述{zi},以及可观察的描述{yi},而在测试时,只知道其可观察的描述y_test,但不知道其完整的描述z_test。θ是可学习的求解器的参数。理想情况下,希望有一个优化器,可以做到(1)处理损失函数景观的复杂性(例如,高度非线性的目标f,复杂的和可能组合的域f),(2)利用过去解决类似问题的经验,(3)可以处理部分信息设置,当在测试时间做出决定时,仅可以看到可观察的问题描述y,而不能看到真实的问题描述z。

2025-04-10 09:35:30 610

原创 Time-VLM:探索用于增强时间序列预测的多模态视觉-语言模型

虽然文本提供了上下文理解,但它通常缺乏细粒度的时间细节。与此相反,将时间序列数据转化为视觉表示,例如通过格拉门角场(GAF)或复发图,能够使模型识别和利用潜在的视觉模式,从而促进使用图像化特征学习技术(例如,卷积神经网络,CNN)提取复杂的时间关系(图1,左)。TAL模块为输入时间序列提供上下文文本表示,包括预定义(例如描述性任务)或动态生成的文本,灵活适应各种场景对于动态生成的提示,TAL提取时间序列的关键统计特征,包括:最小值和最大值、基于一阶差分的上升/下降、预测的历史窗口、领域特定的描述。

2025-03-30 17:27:18 1724 1

原创 Nature: 准确预测小样本数据的表格基础模型

将表格分解为行与列两个正交维度,分别进行注意力计算,充分捕捉样本间与特征间的依赖关系。然而,表格数据具有高度异质性:特征类型多样(布尔型、分类型、连续型)、存在缺失值与异常值,且不同数据集间特征语义差异显著(如“温度”在材料科学与气象学中的含义不同)。论文提出了一种名为Tabular Prior-data Fitted Network(TabPFN)的表格基础模型,用于在小到中型表格数据上进行准确的预测,并在多项基准测试中显著优于现有的方法,如梯度提升决策树(如CatBoost、XGBoost等)。

2025-03-14 09:00:59 1566

原创 TimeCMA:通过跨模态对齐实现大模型赋能的多变量时间序列预测

文章信息论文题目为《TimeCMA: Towards LLM-Empowered Multivariate Time Series Forecasting via Cross-Modality Alignment》,论文提出了一种基于大语言模型的时间预测框架,通过模态对齐的方式实现使用LLM进行预测,并提出使用最后一个token进行解码的方法降低计算成本。摘要多变量时间序列预测(MTSF)旨在学习...

2025-03-08 21:27:12 1583 2

原创 论文征集 | Transportmetrica A: Transport Science特刊征稿

JCR Q2期刊Transportmetrica A: Transport Science特刊AI-driven prediction and optimization for smart rail transit systems上线邀稿特刊主题The rapid expansion of rail transit systems, including subways, light rail, r...

2025-03-07 17:04:05 660

原创 SCI论文征集|Transportation Research Part D特刊征稿

Transportation Research Part D的特刊“Machine Learning for Sustainable Maritime Transportation: Empirical Insights and Policy Implications”将延期收稿到2025年10月,客座编辑包括丹麦技术大学Prof Jasmine Lam,清华大学白茜文副教授,西交利物浦大学陈中硕...

2025-03-06 17:00:29 327

原创 慕课第二次开课通知 | 《人工智能与交通大数据实战》,欢迎选修!

各位小伙伴们,2024年我在中国大学MOOC开设面向全国高校师生的《人工智能与交通大数据实战》课程,编号:0818BJTU217,交通、土木、规划、计算机等领域的本科生和研究生都可以选,欢迎大家选课交流!也欢迎大家推荐给身边的同学和学弟学妹们选课!今年首次开课,课程内容与我在北京交通大学开设的《人工智能与交通大数据实战》课程,内容一致,认真学习后,相信大家会有不错的收获!2025年继续开课!开课平...

2025-02-27 09:01:10 864

原创 用于未知参数约束下的混合整数线性规划问题的二阶段预测后优化

文章信息文章题为“Two-Stage Predict+Optimize for Mixed Integer Linear Programs with Unknown Parameters in Constraints”,该文于2023年发表在NeurIPS 2023。该文章提出了一种适用于未知参数出现在约束上的Predict+Optimize框架,该框架也能适用于混合整数线性规划问题。摘要Pred...

2025-01-27 22:49:57 1049

原创 基于不可微分优化的面向决策学习:学习局部优化的决策损失

文章信息文章题为“Decision-Focused Learning without Differentiable Optimization: Learning Locally Optimized Decision Losses”,该文于2023年发表在NeurIPS 2022。该文章提出了一种完全用自动学习的损失函数取代决策聚焦学习中优化组件的方法。摘要决策聚焦学习(Decision-Focus...

2025-01-19 11:20:58 893

原创 超越局部损失函数的预测-优化方法

1 文章信息文章名为Leaving the Nest : Going Beyond Local Loss Functions for Predict-Then-Optimize。发表在第38届AAAI Conference on Artificial Intelligence. 作者来自哈佛大学。2 摘要预测-优化是一种利用机器学习在不确定性下进行决策的方法框架。其核心研究问题是:“本文如...

2025-01-01 23:16:47 1632

原创 数据驱动的偏微分方程发现方法

文章信息论文题目为《Data-driven discovery of partial differential equations》,该文于2017年发表于《Science Advances》上。文章提出了一种稀疏回归方法,能够通过在空间域中的时间序列数据来挖掘给定系统的控制偏微分方程。摘要本文提出了一种稀疏回归方法,能够通过在空间域中的时间序列数据来发现给定系统的控制偏微分方程。回归框架依赖于稀...

2024-12-31 17:43:04 1417

最新的北京地铁shp文件(shapefile文件)

最新的北京地铁shp文件(shapefile文件),包括新开通的16号线北段

2017-05-20

中国铁路shapefile文件

该文件包涵全国的铁路shapefile文件

2016-10-20

北京地铁线路图 GIS图 shapefile文件 最新 2018

北京最新的地铁GIS文件,shapefile文件,包括西郊线,燕房线,S1线

2018-03-30

北京地铁线路shapefile 文件(16号线北段).zip

最新的北京地铁shp文件(shapefile文件),包括新开通的16号线北段,截止日期2017年5月份 GIS文件。

2019-05-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除