38、Scantegrity II:实现最佳抗胁迫性的投票系统

Scantegrity II:实现最佳抗胁迫性的投票系统

1. 引言

在投票系统中,抗胁迫性是一个至关重要的特性,它能确保选民的投票意愿不被外界胁迫所左右。今天我们要探讨的Scantegrity II系统,就是一个在抗胁迫性方面表现出色的投票系统。

2. 理想协议的抗胁迫水平

理想协议的抗胁迫水平(δ)与诚实选民数量、候选人数量以及选民选择的概率分布有关。以下是不同情况下的抗胁迫水平示例:
| 候选人情况 | 概率分布 |
| — | — |
| 5 候选人 | (p_0 = 0.3, p_1 = 0.2, p_2 = 0.05, p_3 = p_4 = p_5 = 0.15) |
| 2 候选人 | (p_0 = 0.3, p_1 = 0.1, p_2 = 0.6) |
| 2 候选人 | (p_0 = 0.3, p_1 = p_2 = 0.35) |
| 2 候选人 | (p_0 = 0.0, p_1 = p_2 = 0.5) |

在这些情况下,被胁迫选民的目标是投票给候选人 1。通过分析这些数据,我们可以了解到不同参数对理想协议抗胁迫水平的影响。

3. Scantegrity II 系统概述

Scantegrity II 系统的参与者除了选民之外,还包括以下几类:
- 工作站(WSt) :投票过程的核心组件,控制着一个公告板,用于广播消息,所有人都可以读取公告板上的信息。工作站还包含一个扫描仪和一个伪随机数生成器(PRNG)。
- 审计员(aud1, …, audt) </

内容概要:本文研究了一种基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的故障诊断方法,利用DWVD对振动信号进行时频特征提取,并将其转化为二维图像输入到CNN-LSTM混合深度学习模型中,实现对机械系统尤其是轴承故障的高精度自动识别。文中详细阐述了信号处理流程、模型构建方式及训练策略,并采用CWRU轴承数据集进行实验验证,结果表明该方法在复杂工况下具有优异的诊断准确率和鲁棒;同时提供了完整的Matlab代码实现,便于复现与进一步研究。; 适合人群:具备一定信号处理与机器学习基础,从事机械故障诊断、工业自动化或智能制造方向的研究生、科研人员及工程技术人员;熟悉Matlab编程者更佳。; 使用场景及目标:①应用于旋转机械设备的状态监测与早期故障预警;②为深度学习在工业故障诊断中的落地提供可参考的技术路线与实现方案;③支持学术研究中的模型对比、算法改进与创新验证。; 阅读建议:建议结合提供的Matlab代码逐模块理解实现细节,重点关注DWVD时频图生成、数据预处理、CNN-LSTM网络结构设计与参数调优过程,同时可尝试在其他公开数据集上迁移验证以加深理解。基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的故障诊断研究(Matlab代码实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值