自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(518)
  • 收藏
  • 关注

原创 SWAT模型 ▎流域水文过程研究、污染负荷评估以及水资源与生态保护等领域

1.1 面源污染概要1.2 SWAT模型及应用1.3 AI大模型辅助SWAT应用1.4 SWAT模型原理1.5 SWAT模型输入文件1.6 ArcGIS Pro下的SWAT模型。

2025-04-23 17:30:24 458

原创 高光谱领域:辐射校正、几何校正、大气校正、光谱预处理、降维、特征提取、混合像元分解、地物分类与识别、目标检测与变化检测等

在科技日新月异的今天,高光谱遥感技术已成为推动多领域智能化发展的核心动力。无论是城市变迁的精准监测、农林业识别,还是地质找矿、生态环境的深度评估,空天地一体化的遥感数据正在重塑科研与商业的边界。然而,面对复杂的高光谱数据处理与分析需求,许多从业者仍感到无从下手。本内容以实战为导向,结合DeepSeek与Python的强大功能,为您提供从基础到进阶的完整学习路径,助您在高光谱遥感领域游刃有余。本内容通过模块化设计与真实案例结合,带您深入探索高光谱遥感数据的奥秘。

2025-04-23 14:36:09 505

原创 python多光谱遥感数据的整理、图像分类、多时间序列处理、多传感器协同等

与昂贵、不易获取的高光谱、高空间分辨率卫星数据相比,中等分辨率的多光谱卫星数据可以免费下载获取,例如:landsat数据、哨兵-2号数据、Aster数据、Modis数据等,这些海量的长时间对地观测数据,蕴藏着丰富的信息。通过对光谱、图像等数据处理,掌握岩矿、土壤、植被等地物的光谱特征和图像特征,结合ENVI等专业软件、Python开发工具平台,开展多光谱数据预处理、图像分类、定量评估、机器学习等方法的实践和开发,提高运用多光谱遥感技术解决实际问题能力。多光谱数据重组整理、机器学习模型构建、训练方法。

2025-04-22 16:53:13 405

原创 蒸散发、土壤蒸发、植被蒸腾在站点尺度的计算

Python是一种简单易学、功能强大的编程语言,具有丰富的标准库和广泛的第三方库支持,适用于大数据处理、人工智能、Web开发等多个领域。Python中常见的数据问题有数据重复、数据异常、文本类型、数据缺失、数据无效等,对应异常值处理、文本转换和空缺值填补等操作。下载后的数据为hdf格式,根据研究需求,对下载后的数据进行处理,包括数据格式转换、定义投影、对应栅格值提取、数据汇总等。区域地表蒸散发及其组分(土壤蒸发、植被蒸腾、冠层截留蒸发)、植被总初级生产力数据的下载、处理、显示与统计。

2025-04-22 16:47:37 571

原创 cmip6多模式数据整合与比较、降尺度处理

CMIP6(Coupled Model Intercomparison Project Phase 6)降尺度技术是指利用全球气候模式(GCMs)模拟的较粗分辨率数据,通过一系列统计、数学和物理方法,将其降尺度到更细的空间尺度。常用的降尺度技术包括统计降尺度方法、动力降尺度方法等,其中统计降尺度方法是通过统计关系来估算细尺度的气候变量,而动力降尺度方法则是利用物理过程模型对粗尺度数据进行调整来得到更为精细的结果。●CORDEX、AMIP、PMIP、ScenarioMIP、GeoMIP等重要比较计划。

2025-04-22 16:42:06 796

原创 AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用

在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI 凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参数(如叶面积指数、叶绿素含量、植被覆盖度等)反演的精度与鲁棒性。

2025-04-21 17:53:10 889

原创 AI赋能Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估

从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT 、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势。GDAL库的介绍、安装与应用示例(多种栅格数据格式、数据裁剪、重投影以及统计分析等)湿度(WET)、绿度(NDVI)、热度(LST)和干度(NDBSI)等生态指标计算。

2025-04-21 17:06:42 637

原创 基于AI大语言模型的历史文献分析在气候与灾害重建领域中的技术应用

随着人工智能技术的快速发展,大语言模型(如GPT、BERT等)在自然语言处理领域取得了显著进展,特别是在非结构化文本数据的分析方面,极大地拓展了我们的研究视角。这些技术不仅提高了处理和理解文本数据的效率,还为传统的历史灾害研究注入了全新的活力,使我们能够更加深入地探索历史事件的内在规律。本内容将文本分析技术与历史灾害研究相结合,首先介绍大模型驱动的文本分析基础理论与实践方法,帮助学生掌握将非结构化数据转化为结构化信息的核心技能;

2025-04-17 13:58:36 457

原创 基于AI的气候降尺度技术、动力降尺度、极端气候事件指数计算与分析

为科学理解和有效应对气候变化,气候专家开发了一系列全球气候模型(GCM),这些复杂的数值模型通过数学方程组描述大气、海洋、冰层、陆地和生物地球化学过程等地球系统组成部分及其相互作用。世界气候研究计划(WCRP)组织的气候模型比较计划(CMIP)提供了宝贵的框架,使科学家能够系统性地比较不同模型的模拟结果,评估其一致性与不确定性。●大语言模型(LLM)的基本原理和发展趋势(ChatGPT、GPT-4、Gemini、DeepSeek、Claude等)●全球气候(环流)模型的基本原理、发展历程与最新进展。

2025-04-17 13:48:24 939

原创 生态环境现状调查与评价、生态影响预测与评价

3、生物量计算方法:基于观测数据的统计分析和模型模拟,选取地学参数、遥感反演参数等自变量分别构建多元逐步回归模型和神经网络模型。群落水平的主要模型:群落分布模型、关系网络模型、物种特征方法、物种-面积曲线;2)明确建设项目与保护目标的位置关系,标注出准确的位置关系(方位、距离等)。1、流程:评价模型指标选取原则、体系构成、指标权重的计算、评价模型的确定。3.生态补偿:等量补偿(占地面积、砍伐树木量、生物量、生态效益)2、机场建设类:原则、方案、实例讲解与模拟评价(大兴机场)

2025-04-15 17:16:33 834

原创 生态环评:生物量与净初级生产力测定、生态系统类型及服务价值评估、物种适宜生境分析及分布图的制作、水生生态系统健康状况评价、景观生态学评价及景观指数计算、生态环境状况综合评价指数

内容包括生态环评的工作程序、生物多样性测定、生物量及净初级生产力测定、生态系统格局及服务功能评估、生物完整性指数测定、景观指数计算、生态环境状况综合指数计算;土地利用现状图、植被类型图、植被覆盖度图、生态系统类型图、物种适宜生境分布图等都是根据野外调查和数据分析绘制的地图,用以展示项目区域的自然环境特征和生态信息,为生态环评和规划提供可视化的参考工具。4、评价因子和生态保护目标确定:物种、生境、生物群落、生态系统、生物多样性、生态敏感区、自然景观等不同受影响对象所对应的评价因子。

2025-04-15 15:44:30 623

原创 ROMS海洋数值建模与多尺度耦合模拟——从Linux开发、模式调试到风暴潮-示踪剂综合应用

随着海洋科学的快速发展,海洋数值模拟在科研与实际应用中扮演着越来越重要的角色。ROMS(Regional Ocean Modeling System)作为一种高效、灵活且高度可定制的海洋数值模型,已广泛应用于海洋动力学、环境保护、资源管理等多个领域。本次会议旨在深入探讨ROMS在海洋研究中的应用,尤其是在潮汐潮流模拟、风暴潮耦合模拟、以及示踪剂模拟等方面的优势与特点。ROMS的优势在于其高精度的模拟能力和较强的区域适应性,使其成为科研和工程应用中的重要工具。

2025-04-08 15:29:54 485

原创 AI辅助生态制图与可视化,土地利用变化与生态系统服务案例复现

方法篇:深入讲解多源数据选择与统一,PLUS与InVEST模型的运行方法,空间数据的处理与时空变化分析。情景分析方法,通过构建不同的土地利用情景,深入分析生态系统服务的变化与相互作用,为土地政策的制定提供理论依据。本次将通过具体案例实战,学员将在真实数据上应用所学的原理与技术方法,完成从数据获取、模型建立、情景模拟到结果分析与报告撰写的全过程,提升空间信息技术的应用能力和科研实践能力。复现某篇生态学研究文章中的空间分析与可视化部分,生成土地利用变化的热图和生态系统服务功能图,使用AI优化结果可视化。

2025-04-08 11:13:42 642

原创 如何使用WRF-Hydro GIS工具,生成运行WRF-Hydro模型的Domain文件,包括流域、地形、河网、湖泊等

随着地球系统科学的快速发展融合,该模式的应用前景将非常广泛。复杂的耦合过程:WRF-Hydro模型需要同时考虑大气和水文过程的相互作用,包括降水、蒸发、径流等一系列过程的耦合,这使得模型的建立和求解变得复杂。数据需求大:WRF-Hydro模型需要大量的输入数据,包括大气模型的输出、地形数据、土壤水文参数等,这些数据的获取和处理需要耗费大量的时间和精力。4、工具2:WRF-Hydro GIS工具,主要讲解如何使用工具,生成运行WRF-Hydro模型的Domain文件,包括流域、地形、河网、湖泊等。

2025-04-07 17:24:08 717

原创 R 的安装、使用、编程以及 R 语言独特的语法和用法,常用气象水文图形的汇制

R 不仅功能强大,更是简单易学,所以目前成为了在数据分析领域最热门的集中编程语言之一, 广泛用于人工智能、统计学术研究在内的各个领域,鉴于 R 开源的特性和强大的功能,R 与 Python 慢慢成为了数据分析与人工智能领域最流行的语言。本内容聚焦 R 在气象水文领域的应 用,将贯穿气象水文分析制图的整个流程,从多个方面来介绍 R 在气象水文领域的使用技巧,用大 量的例子来讲解一些典型的 R 包在气象水文数据分析及图形汇制的具体使用。R绘图中的“设备概念”与R画图的基本概念,一张图的基本组成部分。

2025-04-07 17:05:32 757

原创 AI与Python在地球科学多源数据交叉融合中的前沿

面向地球科学领域研究人员,聚焦Python编程与前沿AI技术的融合应用,解决地球科学研究中的复杂问题。在气候变化与极端天气事件频发的背景下,本内容将传统分析方法与现代AI技术结合,助力研究人员提升数据处理效率与科学发现能力。课程从Python基础快速过渡到Xarray、Dask等专业工具,深入探讨CMIP6气候模拟与WRF区域气象模式的高效处理。核心内容包括AI技术在时空数据处理、多源数据融合、预测模型构建等方面的应用,涵盖时间序列分析、空间统计建模、遥感影像解译与生态系统模拟等关键领域。

2025-04-03 17:04:28 1404

原创 ChatGPT、DeepSeek支持下地质灾害风险评价模型与方法

1、什么是大模型?大模型(Large Language Model, LLM)是一种基于深度学习技术的大规模自然语言处理模型。l代表性大模型:GPT-4、BERT、T5、ChatGPT 、DeepSeek等。l特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行业等多领域应用。2、高效提示词设计●什么是提示词?提示词(Prompt)是向大模型输入的文字说明,用于引导其生成期望的输出。●提示词的设计原则。

2025-04-01 15:04:43 847

原创 智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用

通过机器学习(K-means,SVM,决策树)和深度学习(CNN,LSTM)技术来分析和预测这些驱动因素的趋势,进而为科学研究和政策决策提供重要的数据支持。本内容提供从数据处理、模型选择、训练与优化到结果解读的完整流程指导,将使用真实的全球和模拟的全球气候数据,掌握机器学习与深度学习模型在气候数据在农业、生态分析中的实际应用。5.1 全球气候变化相关数据集下载与处理(MERRA2气溶胶、MODIS气溶胶、MODIS海冰、MODIS叶绿素、CALIPSO气溶胶、AERONET气溶胶)

2025-04-01 14:49:01 694

原创 BIOMOD2软件解决生物多样性保护、气候变化影响评估和入侵物种管理问题

它集成了多种统计和机器学习方法,如GLM、GAM、SVM等,允许用户预测和分析物种在不同环境条件下的地理分布。(3) 特征变量选择:通过相关性分析、主成分分析(PCA)等方法选择具有代表性的特征变量,提高模型效率。理解物种分布模型(SDMs)的理论基础,包括模型的种类、用途以及在生态研究和环境管理中的应用。获取、处理和分析环境与物种数据的能力,包括数据清洗、变量选择和模型优化。生态模型基础:介绍生态模型的基本概念和物种分布模型(SDMs)的重要性。物种分布特征、环境变量与物种分布关系、未来分布特征预测。

2025-03-31 17:29:33 371

原创 基于Maxent的物种分布建模与预测、基于R语言的模型参数优化

MaxEnt(Maximum Entropy)模型是一种基于最大熵理论的物种分布模型,广泛应用于生态学、生物地理学和保护生物学领域。它通过结合物种的存在点(presence data)和环境变量(如气候、地形等),预测物种的潜在分布区域。以下是 MaxEnt 模型在物种分布模拟中的主要优势:1. 对数据要求较低2. 模型性能优越3. 参数优化与正则化4. 结果解释性强5. 适用于多种应用场景6. 用户友好与易用性7. 支持未来情景预测8. 与其他工具的兼容性。

2025-03-31 17:24:37 359

原创 AI与机器学习气候变化--温室气体浓度的时序分析与预测

通过机器学习(K-means,SVM,决策树)和深度学习(CNN,LSTM)技术来分析和预测这些驱动因素的趋势,进而为科学研究和政策决策提供重要的数据支持。本内容提供从数据处理、模型选择、训练与优化到结果解读的完整流程指导,将使用真实的全球和模拟的全球气候数据,掌握机器学习与深度学习模型在气候数据在农业、生态分析中的实际应用。5.1 全球气候变化相关数据集下载与处理(MERRA2气溶胶、MODIS气溶胶、MODIS海冰、MODIS叶绿素、CALIPSO气溶胶、AERONET气溶胶)

2025-03-27 10:48:09 477

原创 AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践

方法篇:深入讲解多源数据选择与统一,PLUS与InVEST模型的运行方法,空间数据的处理与时空变化分析。情景分析方法,通过构建不同的土地利用情景,深入分析生态系统服务的变化与相互作用,为土地政策的制定提供理论依据。本次将通过具体案例实战,学员将在真实数据上应用所学的原理与技术方法,完成从数据获取、模型建立、情景模拟到结果分析与报告撰写的全过程,提升空间信息技术的应用能力和科研实践能力。复现某篇生态学研究文章中的空间分析与可视化部分,生成土地利用变化的热图和生态系统服务功能图,使用AI优化结果可视化。

2025-03-27 10:33:30 1151

原创 土壤风蚀危害与防治:RWEQ模型应用及归因分析实战指南

自20世纪80年代以来,土壤风蚀作为沙漠化的首要环节而得到前所未有的重视,相继开展了大量的实验研究工作,揭示了各种因素对风蚀过程的影响,尤其是人为因素对风蚀的加剧作用,并提出了不同地区的风蚀防治措施。土壤侵蚀的危害及原因:中国山地丘陵面积广,地形起伏大,地面组成物质疏松深厚,降雨强度大,垦殖历史久,植被覆盖率低等,都是引起土壤侵蚀的重要因素。其中,D为某一影响因子,H为风蚀量,Q为影响因子对风蚀量的贡献度,取值范围是[0-1],N、σ2为样本量及其方差,h为样本层数,L为影响因子分类数。

2025-03-26 15:08:48 790

原创 HYDRUS-2D/3D 基于C-RIDE模块的胶体携带污染物迁移

Hydrus是基于Windows系统界面开发的环境土壤物理模拟软件,是模拟一维和多维变饱和多孔介质的水流、溶质(污染物等)运移、根系吸水和溶质吸收、热量传输等方面的强有力工具。将模型参数拓展到二维和三维,基于Hydrus-2D/3D还可以模拟污染物在水平方向和任意复杂地形条件下的迁移问题。HYDRUS-2D/3D 基于C-RIDE模块的胶体携带污染物迁移。HYDRUS-2D/3D 污染物偷排和跑冒滴漏3D简单模型。HYDRUS-2D/3D 土壤污染物淋洗3D层状模型。

2025-03-26 14:28:22 308

原创 MATLAB 2024b深度学习,图神经网络(GNN)

1、MATLAB Deep Learning Toolbox概览2、实时脚本(Live Script)与交互控件(Control)功能介绍与演示3、批量大数据导入及Datastore类函数功能介绍与演示4、数据清洗(Data Cleaning)功能介绍与演示5、深度网络设计器(Deep Network Designer)功能介绍与演示6、实验管理器(Experiment Manager)功能介绍与演示7、MATLAB Deep Learning Model Hub简介。

2025-03-25 16:18:18 873

原创 高光谱遥感从数据到智能决策全流程实现与城市、植被、水体、地质、土壤五维一体应用

基于Python编程入门到DeepSeek工具,把高光谱领域的全部内容都纳进来,包括辐射校正、几何校正、大气校正、光谱预处理、降维、特征提取、混合像元分解、地物分类与识别、目标检测与变化检测等都纳入课程,覆盖全面,循序渐进。每一章都按照原理、实现、练手、实操4个内容;课程以40个真实项目案例为依托,涵盖城市、植被、水体、地质、土壤五大领域,结合前沿的机器学习与光谱分析技术,助您快速掌握高光谱遥感的核心技能。(8)图像的读取、显示、保存、基本属性、颜色空间转换、缩放与裁剪、旋转与翻转、几何变换。

2025-03-25 16:09:11 1221

原创 环境土壤物理模型HYDRUS1D/2D/3D建模

Hydrus是基于Windows系统界面开发的环境土壤物理模拟软件,是模拟一维和多维变饱和多孔介质的水流、溶质(污染物等)运移、根系吸水和溶质吸收、热量传输等方面的强有力工具。将模型参数拓展到二维和三维,基于Hydrus-2D/3D还可以模拟污染物在水平方向和任意复杂地形条件下的迁移问题。HYDRUS-2D/3D 基于C-RIDE模块的胶体携带污染物迁移。HYDRUS-2D/3D 污染物偷排和跑冒滴漏3D简单模型。HYDRUS-2D/3D 土壤污染物淋洗3D层状模型。软件界面和功能及应用特点、注意事项。

2025-03-24 17:21:46 472

原创 基于“RWEQ+”集成技术在土壤风蚀模拟与风蚀模数估算、变化归因分析中的实践应用

自20世纪80年代以来,土壤风蚀作为沙漠化的首要环节而得到前所未有的重视,相继开展了大量的实验研究工作,揭示了各种因素对风蚀过程的影响,尤其是人为因素对风蚀的加剧作用,并提出了不同地区的风蚀防治措施。土壤侵蚀的危害及原因:中国山地丘陵面积广,地形起伏大,地面组成物质疏松深厚,降雨强度大,垦殖历史久,植被覆盖率低等,都是引起土壤侵蚀的重要因素。其中,D为某一影响因子,H为风蚀量,Q为影响因子对风蚀量的贡献度,取值范围是[0-1],N、σ2为样本量及其方差,h为样本层数,L为影响因子分类数。

2025-03-24 16:46:40 631

原创 2025 中科院分区公布!SCI结构全拆解、Nature级科研绘图

创新性不足、重复研究、立意不明、理解不够、研究问题不清、结构不清晰、章节内容拖沓、概念不清、结果分析不够、研究方法存在问题、数据测试考虑不足、结果无法验证、数据可靠性不足、逻辑不清、图文不一致、数据不足、讨论不深入、图表存在问题、没有与前人结果对比、语法时态等语言问题、格式不连贯、前后不一致等等。2.利用烹饪七步法完成SCI论文写作:① 选定料理流派(选题定位);写作方法:参考提供的学术论文【摘要】部分的结构思维导图,利用提供的【摘要】模板和提示词模板,完成论文【摘要】部分的初稿(~10句话)。

2025-03-21 16:01:37 1385

原创 如何高效地处理、分析和应用遥感数据???

【保姆级牵引,包教包会】本内容《DeepSeek、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战》将带您系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。内容特别设计了15个真实案例,免费提供18.1G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。(2)制作和标注机器学习的标签数据。(3)加载森林图像和对应的标注文件。

2025-03-21 14:30:36 455

原创 一图胜千言-顶刊级科研绘图工坊暨AI支持下Nature级数据可视化

在全球顶尖期刊发表范式发生结构性变革的今天,数据可视化已从辅助工具升级为科学传播的"黄金媒介",可谓是「一图胜千言」已成为高水平顶级期刊的硬性门槛——数据显示很多情况的拒稿与图表质量直接相关。Nature统计显示,大部分的评审专家将图表质量列为优先审稿要素。面对复杂图谱、多维数据、时空动态模型的表达需求,科研绘图已成为成果撰写中的至关重要的一个环节。它不仅帮助研究者更直观地展示实验数据,还能有效传递研究成果的深刻含义,也是顶级期刊论文的数据可视化的重要形式。

2025-03-20 11:06:53 505

原创 WRF-LES模拟风场模拟技术详解

1、WRF模型概述1)模型的发展历程2)模型的基本框架2、PALM模型概述1)模型的基本框架2)模型架构与计算网格3)动力学核心4)湍流模块。

2025-03-20 09:56:30 1080

原创 如何通过往年的一些全球变化实验的数据对全球进行预测和可视化

通过机器学习(K-means,SVM,决策树)和深度学习(CNN,LSTM)技术来分析和预测这些驱动因素的趋势,进而为科学研究和政策决策提供重要的数据支持。本内容提供从数据处理、模型选择、训练与优化到结果解读的完整流程指导,将使用真实的全球和模拟的全球气候数据,掌握机器学习与深度学习模型在气候数据在农业、生态分析中的实际应用。5.1 全球气候变化相关数据集下载与处理(MERRA2气溶胶、MODIS气溶胶、MODIS海冰、MODIS叶绿素、CALIPSO气溶胶、AERONET气溶胶)

2025-03-19 16:29:57 1043

原创 风场模拟、城市环境】从WRF-LES到PALM大涡模拟实战

1)模型的发展历程2)模型的基本框架。

2025-03-19 16:21:30 797

原创 基于ChatGPT、DeepSeek、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建

1、什么是大模型?大模型(Large Language Model, LLM)是一种基于深度学习技术的大规模自然语言处理模型。l代表性大模型:GPT-4、BERT、T5、ChatGPT 、DeepSeek等。l特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行业等多领域应用。2、高效提示词设计●什么是提示词?提示词(Prompt)是向大模型输入的文字说明,用于引导其生成期望的输出。●提示词的设计原则。

2025-03-18 18:23:42 1152

原创 空天地遥感数据识别与计算--土壤成分分析、农作物分类、森林火灾检测、水体动态监测等

【保姆级牵引,包教包会】本内容《DeepSeek、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战》将带您系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。内容特别设计了15个真实案例,免费提供18.1G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。(2)制作和标注机器学习的标签数据。(3)加载森林图像和对应的标注文件。

2025-03-18 18:15:12 715

原创 MATLAB 2024b深度学习新特性全面解析与DeepSeek大模型集成开发

1、MATLAB Deep Learning Toolbox概览2、实时脚本(Live Script)与交互控件(Control)功能介绍与演示3、批量大数据导入及Datastore类函数功能介绍与演示4、数据清洗(Data Cleaning)功能介绍与演示5、深度网络设计器(Deep Network Designer)功能介绍与演示6、实验管理器(Experiment Manager)功能介绍与演示7、MATLAB Deep Learning Model Hub简介。

2025-03-18 15:09:14 984

原创 基于HMSC模型的群落数据分析与物种分布预测:方法、对比与应用

又可以同时开展多物种(群落水平)分析,将生态位假说、生物交互作用(种间关联)、物种扩散限制及物种属性和系统发育对物种分布的影响等进行综合考虑。本次内容将以Hmsc包为对象,从群落生态学研究进展入手,逐步介绍Hmsc包对于群落生态学假说的解读、Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用(具体案例)。将通过模型定义、拟合、诊断、评估、预测及结果展示的详细步骤和操作由浅入深讲解使大家掌握此模型方法,实现群落数据分析、物种分布预测、假说验证等工作以解决实际研究和工作中遇到的相关科学问题。

2025-03-18 14:58:09 1004

原创 WRF-Chem在大气环境(PM2.5、臭氧)、能见度、城市化方面应用

在大气环境、气象和城市规划等科研领域,精准的数值模拟已成为探索和解决复杂问题的核心手段。而 WRF-Chem 模式,作为耦合了气象和化学过程的先进工具,正逐渐成为科研学者们手中的一把利剑。你是否在 WRF-Chem 模式的原理探索中感到困惑?是否在调试和运行过程中遭遇瓶颈?是否在数据准备和前处理环节耗费大量时间?是否在模拟结果的后处理和作图上找不到高效的方法?是否渴望将 WRF-Chem 模式应用于大气环境(PM2.5、臭氧)、能见度、城市化等实际问题的研究,却不知从何入手?

2025-03-18 11:43:11 605

原创 从环境搭建到同化应用,WRFDA 资料同化技术在气象预报中的应用

资料同化新方法的快速发展,气象常规资料、卫星遥感观测和大气环境等多种资料日益增加,为资料同化的有效应用奠定了坚实的科学基础,也导致许多新的复杂科学问题,增加了实际应用的难度。你将不再被复杂的理论和繁琐的操作所困扰,而是能够自信地运用资料同化技术,提升数值预报的精度和效率,为气象、海洋、大气环境等领域的预测和决策提供强有力的支持。1、结合实际的天气个例,重点掌握WRF DA和WRF ETKF-3DVAR混合同化系统的同化、预报的参数设置、新资料的同化方法和系统运行、结果分析,以及与其他模块的耦合等。

2025-03-18 10:48:55 1006

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除