自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(340)
  • 收藏
  • 关注

原创 Python语言在地球科学交叉领域中的实践

Python是功能强大、免费、开源,实现面向对象的编程语言,Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台(x86和arm),Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在大多数平台上的许多领域都是一个理想的脚本语言,特别适用于快速的应用程序开发。Python具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。

2024-06-07 17:00:08 567

原创 Earth Engine(GEE)遥感云大数据分析、管理与可视化及洪涝灾害监测、干旱遥感监测、物候特征分析、森林植被健康状态监测、生态环境质量动态监测案例

遥感数据的空间、时间、光谱分辨率及数据量均大幅提升,呈现出大数据特征。这为相关研究带来了新机遇,但同时也带来巨大挑战。传统的工作站和服务器已无法满足大区域、多尺度海量遥感数据处理需求。为解决此问题,全球涌现出多个地球科学数据在线可视化计算和分析云平台,如谷歌Earth Engine(GEE)、航天宏图PIE Engine和阿里AI Earth等。

2024-06-07 15:48:23 864

原创 流域生态系统水-碳-氮耦合过程模拟

流域是一个相对独立的自然地理单元,它是以水系为纽带,将系统内各自然地理要素连结成一个不可分割的整体。碳和氮是陆地生态系统中最重要的两种化学元素,而在流域系统内,水-碳-氮是相互联动、不可分割的耦合体。在人类活动的影响下,陆地水循环过程以及伴随着的碳氮生物地球化学过程都将发生显著变化,并导致气候变化和生态环境问题,因此流域生态系统水-碳-氮耦合过程模拟与环境影响已成为当前关注的焦点。基于ArcGIS的SWAT模型是一类比较典型的流域模型,结合S。模型和生物地球化学循环模型可以实现流域水碳氮综合模拟。

2024-06-06 15:22:02 269

原创 【Apsim模型】精细农业、水肥管理、气候变化、粮食安全、土壤碳周转、环境影响、农业可持续性、农业生态领域

APSIM模型有Classic和Next Generation两个系列模型,能模拟几十种农作物、牧草和树木的土壤-植物-大气过程,被广泛应用于精细农业、水肥管理、气候变化、粮食安全、土壤碳周转、环境影响、农业可持续性、农业生态等诸多与农业生产和科研有关的领域。R语言是一门应用场景广泛、简单易学的程序语言,APSIM模型开发了许多R语言辅助包,在APSIM模型的气候、土壤、管理措施等数据准备,自动化模拟,参数优化和结果分析上都发挥着重要的作用。案例一:使用R语言进行气象文件的生成。土壤水蒸散和植物蒸腾算法。

2024-06-06 15:04:09 1000

原创 R语言BIOMOD2 及机器学习方法的物种分布模拟

BIOMOD2模型的运行涉及多个步骤,包括物种分布文件的建立、环境变量的选择、模型参数及其设置、模型算法介绍及主要参数等。1、理解物种分布模型的基本原理:理解物种分布模型(SDMs)的理论基础,包括模型的种类、用途以及在生态研究和环境管理中的应用。2、掌握BIOMOD2软件包的使用:在R环境中有效地使用BIOMOD2软件包,包括数据准备、模型构建、模型评估和结果解释。3、提高数据分析和处理能力:获取、处理和分析环境与物种数据的能力,包括数据清洗、变量选择和模型优化。

2024-06-05 16:48:29 463

原创 AquaCrop农业水资源管理,模拟作物生长过程中水分的需求与消耗

AquaCrop是由世界粮食及农业组织(FAO)开发的一个先进模型,旨在研究和优化农作物的水分生产效率。这个模型在全球范围内被广泛应用于农业水管理,特别是在制定农作物灌溉计划和应对水资源限制方面显示出其强大的实用性。模型的核心优势在于其独特的水分管理能力,能够精确模拟作物生长过程中水分的需求与消耗,帮助农业工作者制定更为科学和高效的灌溉策略。通过对作物的水分需求和供应的精确计算,AquaCrop 能够帮助提高水资源的使用效率,优化作物产量和质量。1. AquaCrop模型的应用范围。3.模型输入数据要求。

2024-05-31 17:00:47 225

原创 长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析

植被是陆地生态系统中最重要的组分之一,也是对气候变化最敏感的组分,其在全球变化过程中起着重要作用,能够指示自然环境中的大气、水、土壤等成分的变化,其年际和季节性变化可以作为地球气候变化的重要指标。目前已经从卫星获取的遥感数据反演了许多长时序生物物理参量产品,如GIMMS3g NDVI/LAI/FAPAR、MODIS NDVI/LAI/FAPAR/ GPP、GLASS LAI/FVC/GPP等,并且已经广泛应用于全球或区域尺度植被变化趋势及格局分析。经QC后的产品最大值/均值/中值等合成。

2024-05-31 16:32:33 256

原创 AquaCrop模型原理、数据准备、运行及结果分析、参数分析、源代码分析

AquaCrop是由世界粮食及农业组织(FAO)开发的一个先进模型,旨在研究和优化农作物的水分生产效率。这个模型在全球范围内被广泛应用于农业水管理,特别是在制定农作物灌溉计划和应对水资源限制方面显示出其强大的实用性。模型的核心优势在于其独特的水分管理能力,能够精确模拟作物生长过程中水分的需求与消耗,帮助农业工作者制定更为科学和高效的灌溉策略。通过对作物的水分需求和供应的精确计算,AquaCrop 能够帮助提高水资源的使用效率,优化作物产量和质量。1. AquaCrop模型的应用范围。3.模型输入数据要求。

2024-05-29 17:09:29 493

原创 GIS、Python机器学习技术的地质灾害风险评价、易发性分析与信息化建库及灾后重建中的实践

GIS(Geographical Information System)——地理信息系统,是集地理、测绘、遥感和信息技术为一体,地理空间数据进行获取、管理、存储、显示、分析和模型化,以解决与空间位置有关的分析与管理问题。运用GIS分析技术,对各因素进行统计分析、信息叠加复合,研究地质灾害类型、分布规律级别和灾害损失度等,运用危险性指数等方法对地质灾害危险性现状评价与制图,将能使地质灾害风险评价更加效率化、科学化,为地质灾害数据库建设提供有力支撑。拓展篇,GIS在灾害重建中的应用方法;precision;

2024-05-29 15:37:56 827

原创 ChatGPT4助力决策树、随机森林、Adaboost、XGBoost和LightGBM近红外光谱分析

ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、自编码器、U-Net等)的基本原理及Python、Pytorch代码实现方法。2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

2024-05-28 16:12:40 1029

原创 土壤风蚀模拟与风蚀模数估算、变化归因分析中的实践应用

修正的土壤风蚀方程(revised wind erosion equation,RWEQ)被广泛应用于土壤风蚀预报

2024-05-28 16:06:37 554

原创 “Python+”集成技术高光谱遥感数据处理与机器学习(高光谱数据预处理-机器学习-深度学习-混合像元分解-农业-土壤-矿物等)

结合Python编程工具,专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题,通过复现高光谱数据处理和分析过程,并解析代码,掌握python高光谱数据处理技巧。通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。深入探讨了高光谱遥感数据处理技术,涵盖了基本概念、成像原理、数据处理和分析方法,以及运用机器学习和深度学习模型提取和应用高光谱信息的技术。

2024-05-24 15:30:23 716

原创 山洪预警模拟与洪水危险性评价

洪水淹没危险性(各种年遇型洪水淹没)是洪水损失评估、风险评估及洪水应急和管理规划等工作的重要基础。当前开展洪水危险性研究工作中的主要困难之一是水文资料稀缺,尤其是径流资料稀缺,既包括径流观测资料在时间上的短缺,如观测年限较短和观测采样频率低;将瞄准我国山洪预警模拟和洪水淹没危险性评价现状,针对我国资料水文稀缺地区,介绍并提出洪水资料增补方法,介绍区域洪水频率分析方法,应用。软件是一款典型的洪水淹没危险性分析模型,已在世界范围内被广泛应用在洪水风险管理的研究、规划和生产之中,具有广阔的前景。

2024-05-24 15:16:11 645

原创 作物水文模型AquaCrop---用于评估作物对水的需求、灌溉计划和管理策略

运用2017-2018年南疆绿洲区膜下滴灌棉花土壤水分、冠层覆盖度、生物量、蒸散量(ET)及产量(Y)数据,校准和验证AquaCrop模型中作物参数,将数据输入AquaCrop模型气象、作物、灌溉、田间管理模块模拟了6种灌溉水平(18、24、30、36、45和54mm)和5个播期(3月23日、4月3日、4月13日、4月23日和5月3日)共30种情景下南疆绿洲区膜下滴灌棉花的生物量和产量,并分析1988-2017年连续30a棉花产量的稳定性和可持续性。王洪博 李国辉 徐雪雯 黄维雄 赵泽艺 高阳 王兴鹏。

2024-05-23 15:09:15 932

原创 GPT-ArcGIS数据处理、空间分析、可视化及多案例综合应用

GIS以其强大的空间数据处理、先进的空间分析工具、灵活的地图制作与可视化能力、广泛的扩展性和定制性,成为地理信息科学的核心工具。结合ArcGIS和GPT的优势,本次培训班将重点讲解AI大模型应用、ArcGIS工作流程及功能、Prompt使用技巧、AI助力工作流程、AI助力数据读取与处理、AI助力空间分析、AI助力遥感分析、AI助力二次开发、AI助力科研绘图以及ArcGIS与AI的综合应用。6.5 案例:AI助力ArcGIS实现对txt、excel数据的读取及点数据形成。

2024-05-23 14:18:58 628

原创 GPT+Python近红外光谱数据分析

掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、自编码器、U-Net等)的基本原理及Python、Pytorch代码实现方法。2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

2024-05-22 16:58:02 1331

原创 ChatGPT自然科学应用,R语言lavaan结构方程模型、copula函数

1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储。

2024-05-22 14:46:11 1132

原创 R语言lavaan结构方程模型(SEM)

结构方程模型(Sructural Equation Modeling,SEM)是分析系统内变量间的相互关系的利器,可通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。在R语言结构方程程序包中,lavaan具有简洁的语法结构、成熟模型构建和调整过程和稳定可靠的结果等特点,使其不亚于收费商业软件,是最受欢迎的结构方程模型程序包之一。1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等。

2024-05-21 14:20:50 748

原创 水文领域Copula函数应用,高维数据与Vine Copula

在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供变量间相关性变化的细节;Copula不但可以提供不同取值范围内变量间相关的结构和函数细节,而且可以应用于相关时间序列及回归分析的研究中,大大拓展了回归及时间序列分析的适用范围。相对于相关系数,Copula理论比较深奥不易掌握,需要借助专门的软件或工具,运用规范的统计学方法才能得到正确的结果。

2024-05-21 13:57:01 366

原创 SEM结构方程模型之lavaan空间自相关数据分析

训练内容包括R语言入门、结构方程模型原理简介、lavaan包简介及应用案例、潜变量分析、复合变量分析、非线性/非正态/缺失数据、分类变量、分组数据、嵌套/分层/多水平数据、重复测量和时间数据、空间数据及非递归模型。)是分析系统内变量间的相互关系的利器,可通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等。

2024-05-17 22:27:28 512

原创 AquaCrop模型独特的水分管理能力

为了让更多的科研人员和农业工作者能够深入理解AquaCrop模型的原理,有效地运用这一工具,将详细讲解AquaCrop模型的各个组成部分,包括气象、土壤、作物和管理措施等数据的准备和输入。通过模型的实践操作和结果分析,让参与者能够不仅理解模型背后的科学原理,同时掌握如何在实际工作中应用模型来解决问题。模型的核心优势在于其独特的水分管理能力,能够精确模拟作物生长过程中水分的需求与消耗,帮助农业工作者制定更为科学和高效的灌溉策略。1. AquaCrop模型的应用范围。3.模型输入数据要求。

2024-05-17 22:24:37 308

原创 刷屏一天GPT-4o,发现GPT4用的都还不熟练?戳这儿

3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)案例10.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图。5) 主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优。

2024-05-16 15:04:14 1128 2

原创 AquaCrop模型农业水资源管理及代码解析

模型的核心优势在于其独特的水分管理能力,能够精确模拟作物生长过程中水分的需求与消耗,帮助农业工作者制定更为科学和高效的灌溉策略。通过对作物的水分需求和供应的精确计算,AquaCrop 能够帮助提高水资源的使用效率,优化作物产量和质量。为了让更多的科研人员和农业工作者能够深入理解AquaCrop模型的原理,有效地运用这一工具,将详细。深入探讨如何通过修改模型代码来定制和优化模型,以适应特定的研究需求或解决特定的农业问题。AquaCrop模型的各个组成部分,包括气象、土壤、作物和管理措施等数据的准备和输入。

2024-05-16 14:21:23 561

原创 EFDC建模方法及在地表水环境评价、水源地划分、排污口论证中实践【从软件安装到EFDC源码编译】

在美国环保署(EPA) 的支持下,EFDC已成为最大日负荷总量计划(TMDLs)推荐模型家族中的一个重要成员,并越来越被国内科研工作者所青睐,在水环境容量测算、水沙特性研究、环评规划等方面都有应用。近年,随着水环境问题的凸显,地表水水环境状况不仅是公众关注的焦点,也是环保、水务等部门兼管的重点,已成为项目审批、规划制定,甚至领导考核的决定因素,特别是国务院水十条即将出台,必将掀起新一轮的地表水环境质量政策、规划、科研的高潮。1、掌握EFDC模型安装及建模方法(请自备电脑及安装所需软件)

2024-05-15 15:43:35 737

原创 R语言贝叶斯方法在生态环境领域中的应用

回归及结构方程模型概述及数据探索;R和Rstudio简介及入门和作图基础;R语言数据清洗-tidyverse包;贝叶斯回归与混合效应模型;贝叶斯计数数据分析、贝叶斯空间、时间及系统发育相关数据分析;贝叶斯非线性数据分析;贝叶斯结构方程模型及统计结果绘图等

2024-05-15 11:58:11 821

原创 如何评价 OpenAI 2024 Spring 发布的支持实时语音对话的模型 GPT-4O?

3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)案例10.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图。5) 主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优。

2024-05-14 13:55:27 920

原创 ChatGPT大模型提问框架、论文助手、数据清洗、统计分析、经典统计模型、优化算法、机器/深度学习、二次开发、科研绘图、GIS应用、项目基金助手、AI绘图

3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图。主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优。

2024-05-14 11:14:02 496

原创 Copula函数在极值分析、预测极端事件等方面发挥着重要作用

在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供变量间相关性变化的细节;Copula不但可以提供不同取值范围内变量间相关的结构和函数细节,而且可以应用于相关时间序列及回归分析的研究中,大大拓展了回归及时间序列分析的适用范围。相对于相关系数,Copula理论比较深奥不易掌握,需要借助专门的软件或工具,运用规范的统计学方法才能得到正确的结果。

2024-05-13 16:23:18 857

原创 【贝叶斯】贝叶斯网络、贝叶斯统计、贝叶斯参数估计等

1) SEM的定义、生态学领域应用及历史回顾2) SEM的基本结构3) SEM的估计方法4) SEM的路径规则5) SEM路径参数的含义6) SEM分析样本量及模型可识别规则7) SEM构建基本流程如何通过数据探索避免常见统计问题数据缺失(missing value)零值(zero trouble)奇异值/离群值(outliers)异质性(heterogeneity)数据分布正态性(normality)响应变量与预测变量间关系(relationships)

2024-05-13 16:18:05 1455

原创 利用piecewiseSEM解决构建结构方程模型过程中的众多困扰

训练内容包括R语言入门、结构方程模型原理简介、piecewise包简介及应用案例、非正态分布变量分析、嵌套/分层/多水平数据分析、重复测量和时间数据分析、空间自相关数据分析、系统发育数据分析、复合变量分析、分类变量、非线性数据及数据分组分析。在R语言结构方程程序包中,piecewiseSEM语法简洁,将结构方程模型拆分为多个组分(component)模型进行拟合和评估,可与混合效应模型实现无缝对接,在应对研究系统中复杂数据结构和类型,如多层数据嵌套和非正态分布类型变量(二项分布、泊松分布),有明显的优势。

2024-05-12 17:55:24 672

原创 结合大量的精选实例掌握GPT技术的实际效果

3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图。主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优。

2024-05-12 17:51:17 368

原创 现代R语言【Tidyverse、Tidymodel】的机器学习

机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。机器学习涉及的理论和方法繁多,编程相当复杂,一直是阻碍机器学习大范围应用的主要困难之一,由此诞生了Python,R,SAS,STAT等语言辅助机器学习算法的实现。tidymodels,一个符合tidyverse原则的建模框架,包括了一系列包来完成这个美好的使命。这一系列包,各自肩负着自己的责任,以融洽的方式在一起构成了。设计和构建的有利于建模和机器学习的一系列包集合。4.Lasso回归与最小角度回归。

2024-05-11 16:10:41 198

原创 【R语言与统计】SEM结构方程、生物群落、多元统计分析、回归及混合效应模型、贝叶斯、极值统计学、meta分析、copula、分位数回归、文献计量学

(1) R及Rstudio介绍:背景、软件及程序包安装、基本设置等(2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等(3) R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)(4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储。

2024-05-11 16:04:42 933

原创 LCA、GREET 环境影响与碳排放生命周期评估应用及案例分析

​生命周期分析 (Life Cycle Analysis, LCA) 是评价一个产品系统生命周期整个阶段——从原材料的提取和加工,到产品生产、包装、市场营销、使用、再使用和产品维护,直至再循环和最终废物处置——的环境影响的工具​

2024-05-10 15:05:20 1046

原创 【双碳系列】碳中和、碳排放、温室气体、弹手指、碳储量、碳循环及leap、cge、dice、openLCA模型

林业碳汇、电力、交通碳排放

2024-05-10 14:59:47 740

原创 无人机遥感在农林信息提取中的实现方法与GIS融合应用

本课程梳理了我国目前无人机遥感在智慧农业信息提取的综合态势,对无人机平台的性能、机载传感器指标、地面传感器应用、农林遥感光谱指数、农林光谱建模方法进行了大量的分析。在此基础上,按照形态、生理生化、胁迫、估产等四大类信息提取目标,从理论和实践两方面进行了详细的分析。其中,围绕着四大类信息,划分为十四个子专题:株数和株高、冠层覆盖度、作物倒伏、不同生育期状况、叶面积指数、作物系数、叶绿素含量、营养元素含量、异常因素胁迫、病虫害、作物衰老、净同化率、蛋白质含量、生物量。

2024-05-09 16:57:52 694

原创 智慧农业【农业作物模型】DSSAT、DNDC、WOFOST、PCSE、APSIM、作物同化等

作物模型,即作物生长模拟模型(或称作物生长模型),是从系统科学的角度,基于作物生理过程机制,将气候、土壤、作物品种和管理措施等对作物生长的影响因素作为一个整体系统的数值模拟系统

2024-05-09 16:46:29 991

原创 基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归。3.广义地理加权回归:链接函数,泊松回归与二项式回归。2.地理加权回归:基本方法与稳健方法,异常值的检验。8.QGIS中的地理加权回归。

2024-05-08 15:24:59 231

原创 【生态系统服务】MAXENT、PLUS、USLE、INVEST、供需、VORS、SRP模型、SolVES、NPP及碳源、碳汇、CENTURY、生态经济学

生态系统服务功能、​海洋生态系统​淡水生态系统​;陆地生态系统、碳储量

2024-05-08 15:23:03 752

原创 MATLAB近红外光谱分析技术及应用

基于二进制遗传算法的近红外光谱波长筛选

2024-05-07 16:57:37 299

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除