大数据基础

大数据概述

大数据
        是指无法通过常规软件工具在合时间内完成采集、存储、管理和分析的庞大数据集合。这类数据需要借助新型处理模式,才能有效提升决策能力、洞察发现效率以及流程优化水平,具有海量规模、高速增长和多样形态的特征。

        核心特征(4V):

  • 数据体量巨大(Volume)
  • 数据类型多样(Variety)
  • 价值密度较低(Value)
  • 处理速度要求高(Velocity)

Hadoop

概述

  1. 一个开源的软件框架,用于在计算机集群上存储数据并运行应用程序。
  2. 提供解决大数据运算的框架方案。
  3. 支持大规模数据存储与计算。
  4. 针对大型作业具有高效处理能力。
  5. 支持多种处理引擎。
  6. 和传统关系型数据库的对比。

特点

  1. 高可靠性:采用按位存储和处理机制,确保数据安全稳定。
  2. 高扩展性:支持集群分布式计算,可轻松扩展至数千节点规模。
  3. 高效性:具备动态数据迁移能力,实现快速数据处理。
  4. 高容错性:自动维护数据多副本存储,智能重新分配故障任务。
  5. 低成本:开源架构显著降低软件成本,相比传统商业解决方案更具价格优势。
生态概览

HDFS 文件系统核心特性

  1. 专为海量数据存储设计
  2. 支持大数据批量处理
  3. 采用一次写入、多次读取模式
  4. 确保数据强一致性
  5. 通过多副本机制保障高可靠性
MapReduce(分布式离线计算框架)
  1. 源自Google的MapReduce框架
  2. 是一种适用于海量数据(超过1TB)并行计算的编程模型,特别适合大规模数据处理场景
  3. 数据处理完成后,结果会直接存储在对应的计算节点上
  4. 每个MapReduce任务都包含两个核心处理阶段:Map阶段和Reduce阶段
Hive
  1. 基于Hadoop构建的数据仓库工具,支持数据提取、转换和加载(ETL)操作
  2. 提供类SQL查询接口(HQL),语法简单易学
  3. 无需编写复杂MapReduce程序,显著提升开发效率
  4. 专为海量数据的结构化分析而设计
  5. 典型应用场景包括WEB访问日志分析
  6. 常用于构建企业级离线数据仓库
HBase
  1. 作为谷歌BigTable的开源实现,HBase是一个高可靠、高性能的列式分布式数据库,具有出色的可扩展性,特别适合存储非结构化和半结构化的松散数据。
  2. 提供海量数据存储能力,采用列式存储结构,支持高并发访问。
  3. 具备极强扩展性,可通过横向增加RegionServer节点实现水平扩展。
  4. 专为高并发键值查询场景优化设计。
  5. 同时支持实时和批量数据更新操作。
ZooKeeper
  1. 作为分布式服务框架,ZooKeeper专门用于解决分布式应用中常见的数据管理问题。
  2. 在Hadoop生态中,它主要承担高可用性(HA)的实现功能,包括HDFS的NameNode和YARN的ResourceManager的高可用方案。
  3. 同时,ZooKeeper还负责存储YARN中应用程序的运行状态信息。
  4. 此外,该框架还支持负载均衡、数据发布与订阅等多种应用场景。
Spark
  1. 由加州大学伯克利分校AMP实验室(UC Berkeley AMP Lab)开源,是一个类似Hadoop MapReduce的通用并行计算框架。
  2. 特别适用于处理海量数据时的迭代计算任务。

大数据分析概述

大数据分析概念

数据分析是指基于商业等特定目标,系统性地收集、整理、加工和分析数据,从中提炼有价值信息的过程。
大数据分析则专门针对海量、多样化的数据集合进行处理。

大数据分析方法分类
  1. 描述性分析(发生了什么?)

    • 覆盖广泛且精确的实时数据
    • 提供有效的可视化呈现
  2. 诊断型分析(为什么会发生?)

    • 深入挖掘数据核心
    • 从复杂信息中提取关键因素
  3. 预测型分析(可能发生什么?)

    • 运用算法建立历史模型,预测特定结果
    • 采用自动化技术辅助决策生成
  4. 指令型分析(下一步怎么做?)

    • 基于测试结果选择最优行动方案
    • 应用高级分析技术辅助决策制定
大数据分析流程
数据采集与预处理
                包含实时数据采集、离线数据采集、数据清洗、数据变换
采集方法
                web端:基于浏览器、网络爬虫/API,页面浏览日志和交互日志
                传感器:物联网、测量值转化数字信号,如人工智能驾驶(温湿度、障碍
度)
                数据库:源业务系统、数据同步,结构化数据、客户、交易等
                第三方:第三方数据合作方提供,如政府公布宏观数据、公安系统的身份核
                APP端:无线客户端、采集SDK/埋点,页面浏览事件、控制点击事件

数据预处理技术:数据清洗详解

数据清洗概述

数据清洗是指对原始数据集中的噪声数据进行处理的过程,包括修复、平滑或剔除异常数据。这一步骤在数据分析流程中至关重要,通常占据整个数据分析流程60%-80%的时间。数据质量直接影响后续建模和分析的准确性,常见的数据质量问题包括:

  • 数据不完整(缺失值)
  • 数据不一致(异常值)
  • 数据重复
  • 数据格式错误
  • 数据噪声(随机误差)

主要处理内容

1. 异常值处理

检测方法

  • 箱线图法:通过四分位数(Q1, Q3)和IQR(四分位距)识别异常值,通常将小于Q1-1.5IQR或大于Q3+1.5IQR的值视为异常
  • Tukey's test:基于分位数的稳健异常值检测方法
  • Z-score法:计算数据点与均值的标准差距离,通常|Z|>3视为异常
  • 聚类方法:通过聚类算法识别远离主要簇的数据点

处理方式

  • 删除:直接移除异常记录(适用于明显错误且占比小的数据)
  • 视为缺失值:将异常值标记为缺失,后续进行缺失值处理
  • 忽略:在某些鲁棒性强的算法中可保留
  • 修正:根据业务逻辑调整到合理范围

分箱技术

  • 均匀分箱:将数据等分为N个区间(如年龄分为0-20,20-40,40-60等)
  • 中位数分箱:每个箱中的数据量相同
  • 边界分箱:根据数据分布的自然断点划分
  • 数据平滑:包括箱均值平滑(用箱均值代替原始值)、箱边界平滑等

2. 缺失值处理

统计值填充

  • 均值填充:适用于近似正态分布的连续变量(如身高、体重)
  • 众数填充:适用于分类变量(如性别、产品类别)
  • 中位数填充:适用于偏态分布的连续变量(如收入)

固定值填充

  • 使用特定业务逻辑确定的固定值(如用"未知"填充缺失的客户职业)

邻近值填充

  • 前向填充(ffill):用前一个有效值填充
  • 后向填充(bfill):用后一个有效值填充
  • K近邻填充:基于相似样本的值进行填充

模型预测填充

  • 回归模型:建立其他特征与缺失特征的回归关系
  • 随机森林:利用多棵决策树进行预测填补
  • 深度学习:使用自编码器等神经网络模型

插值方法

  • 拉格朗日插值:通过多项式拟合已知数据点
  • 牛顿插值:使用差商构造插值多项式
  • 样条插值:分段低次多项式插值,保证光滑性

3. 重复记录处理

  • 精确去重:所有字段完全相同的记录
  • 模糊去重:关键字段相同即视为重复(如身份证号相同)
  • 时间窗口去重:在一定时间范围内出现的相似记录

4. 错误记录修正

  • 格式标准化(如日期统一为YYYY-MM-DD格式)
  • 数据类型转换(如字符串"123"转为数值123)
  • 逻辑校验(如年龄不应大于150岁)

无效数据过滤

根据业务需求过滤特定行或列:

  • 过滤特定条件的行(如删除测试账户数据)
  • 删除缺失率过高的列(如某字段缺失率>80%)
  • 删除低方差特征(对模型无贡献的列)
  • 删除高度相关的特征(避免多重共线性)

实际应用场景示例

电商数据分析

  1. 处理异常订单金额(如1元买iPhone的异常订单)
  2. 填充缺失的用户年龄(基于购买行为模式预测)
  3. 合并同一用户的多个账号(基于设备ID、收货地址等)

医疗数据分析

  1. 修正明显错误的生理指标(如血压300mmHg)
  2. 处理临床试验中的脱落病例数据
  3. 使用多重插补法处理缺失的随访数据

金融风控建模

  1. 识别并处理欺诈交易中的异常模式
  2. 填充客户征信报告中的缺失字段
  3. 标准化不同渠道采集的客户信息格式

数据存储与管理

大数据的存储方式

单硬盘存储

  • 基本概念:使用单一硬盘进行数据存储,是最简单的存储方式
  • 特点
    • 成本低廉,安装简单
    • 存储容量受限于单个硬盘的物理限制
    • 可靠性较低,一旦硬盘损坏可能导致数据完全丢失
  • 适用场景
    • 个人用户的小规模数据存储
    • 非关键性数据的临时存储
    • 测试环境中的简易存储方案

磁盘阵列(RAID)

  • 基本概念:在单台机器上通过多块磁盘实现数据均衡存储
  • 主要类型
    • RAID 0:条带化存储,提高性能但无冗余
    • RAID 1:镜像存储,提供数据冗余
    • RAID 5:带分布式奇偶校验的条带化存储
    • RAID 10:RAID 1+0的组合,兼具性能和冗余
  • 优势
    • 提高存储性能(读写速度)
    • 增强数据可靠性(冗余保护)
    • 增加存储容量(多盘组合)
  • 应用场景
    • 企业级服务器的存储系统
    • 需要高性能和高可靠性的应用环境
    • 数据库服务器等关键业务系统

分布式存储

  • 基本概念:基于网络连接,利用多台机器协同存储数据
  • 核心特征
    • 数据被分割存储在多个节点上
    • 通过网络协议实现节点间通信
    • 具备自动数据复制和故障转移能力
  • 优势
    • 理论上可无限扩展存储容量
    • 高可用性(节点故障不影响整体服务)
    • 支持地理分布式部署
  • 典型应用
    • 云计算平台的基础存储设施
    • 大规模互联网服务的数据存储
    • 跨地域部署的企业存储系统

数据存储技术

分布式文件系统

  • 定义:一种允许通过网络在多台计算机上共享文件的系统
  • 关键技术
    • 元数据管理:集中式或分布式元数据服务
    • 数据分片:将大文件分割存储在多个节点
    • 一致性协议:保证多副本数据的一致性
  • 典型系统
    • HDFS(Hadoop分布式文件系统):
      • 适合大文件存储
      • 采用主从架构
      • 默认3副本机制
    • Ceph:
      • 无单点故障
      • 支持对象、块和文件三种存储接口
      • 采用CRUSH算法实现数据分布
  • 应用优势
    • 处理PB级甚至EB级数据
    • 支持高并发访问
    • 自动处理节点故障
    • 成本效益优于传统存储方案

数据处理技术在现代信息系统中扮演着关键角色,主要分为两种处理范式:

批量计算(Batch Processing)

工作方式:采用周期性处理模式,系统会先将数据集中存储在数据仓库或分布式文件系统(如HDFS)中,待达到预设条件(如时间窗口、数据量阈值)后,由调度系统(如Apache Oozie)触发批量作业执行。

核心特征:

  1. 批量处理模式:典型代表是MapReduce框架,通过分而治之策略处理海量数据
  2. 响应延迟较高:处理周期通常以小时/天为单位,如银行T+1对账系统
  3. 需主动触发执行:依赖外部调度指令,常见触发条件包括:
    • 定时触发(每日凌晨2点)
    • 数据量触发(累计100GB数据)
    • 人工手动触发

典型应用场景:

  • 离线数据分析:电商平台的用户行为分析(昨日UV/PV统计)
  • 报表生成:金融机构的月度财务报表自动生成
  • 数据挖掘任务:电信运营商基于历史通话记录的客户分群

流式计算(Stream Processing)

工作方式:采用持续处理架构,计算服务常驻内存运行(如Flink作业),数据源(如Kafka消息队列)中的每条记录到达后立即触发处理逻辑,实现端到端的流水线运算。

核心特征:

  1. 持续处理机制:7×24小时不间断运行,典型框架包括Spark Streaming/Flink
  2. 毫秒级低延迟:从数据产生到处理完成通常在500ms以内
  3. 事件驱动执行:每个数据事件(如传感器读数)都会立即触发处理流水线

典型应用场景:

  • 实时推荐系统:短视频平台根据用户当前观看行为即时调整推荐内容
  • 业务状态监控:
    • 金融反欺诈:信用卡交易实时风控(每秒处理数万笔交易)
    • 工业物联网:生产线设备状态实时预警
    • 交通调度:网约车平台实时供需匹配计算
数据应用
数据可视化
商业智能(BI):运用数据仓库技术、在线分析处理(OLAP)、数据挖掘及数据展现技术进行商业数据分析,实现价值转化。
工具:阿里云Quick BI、Tableau、QlikView

大数据分析的技术工具与统计基础

数据库基础 数据库系统由以下要素构成:

  1. 支持数据库运行的软硬件环境
  2. 数据库本身
  3. 数据库管理系统(DBMS)
  4. 用户

数据库设计遵循三范式原则:

  • 第一范式(1NF):确保数据的原子性
  • 第二范式(2NF):保证数据的唯一性
  • 第三范式(3NF):实现数据的独立性

关系模型核心概念:

  • 关系:具有特定名称的二维表结构
  • 元组:表中水平方向的行数据
  • 属性:表中垂直方向的列字段
  • 域:属性允许的取值范围
  • 主键:能唯一标识元组的属性或属性组合
  • 外键:在当前表中作为普通属性,在其他表中作为主键的字段

关系模型包含五大约束:

  1. 主键约束
  2. 外键约束
  3. 唯一性约束
  4. 检查约束
  5. 默认值约束

数据仓库基础 定义:面向主题、集成化、时变性的不可更新数据集合,主要用于支持管理决策。

核心特征:

  1. 主题导向:围绕特定业务主题组织数据
  2. 集成性:整合多源数据,统一命名、格式和编码
  3. 时变性:记录历史数据变化,支持趋势分析
  4. 稳定性:数据只读不可修改,定期更新

数据仓库模型详解

星形模型(Star Schema)

星形模型是最基础且广泛应用的维度建模方式,其核心特点包括:

  1. 基本结构

    • 由一个中央事实表(Fact Table)和多张维度表(Dimension Table)构成
    • 事实表存储业务过程的可量化数据(如销售额、订单量等)
    • 维度表存储描述性属性(如时间、地点、产品等)
  2. 关联方式

    • 维度表仅与事实表建立关联关系
    • 维度表之间不存在直接的关联关系
    • 采用外键约束实现关联,维度表主键存储在事实表中
  3. 设计特点

    • 各维度表采用单列主键设计(通常为代理键)
    • 模型呈现明显的星形拓扑结构,事实表为中心,维度表呈放射状分布
    • 典型示例:销售事实表关联产品、时间、客户、商店等维度表
  4. 优势

    • 结构简单,易于理解和实现
    • 查询性能高,减少表连接数量
    • 适合OLAP分析和报表生成

雪花模型(Snowflake Schema)

雪花模型是星形模型的规范化扩展,主要特点包括:

  1. 结构演变

    • 在星形模型基础上,允许维度表继续关联其他子维度表
    • 将星形模型中的大维度表拆分为多个小维度表
    • 形成类似雪花形状的多级关联结构
  2. 设计原理

    • 遵循数据库规范化理论,消除冗余数据
    • 通过外键关系建立多级维度关联
    • 示例:产品维度表可拆分为产品类别表、产品品牌表等
  3. 应用现状

    • 实际应用较为少见,主要因为:
      • 增加了查询复杂度,需要更多表连接
      • 降低了查询性能
      • 数据仓库通常允许适当冗余以提高性能
      • 开发维护难度增加
  4. 适用场景

    • 当维度表包含大量属性且存在明显层次关系时
    • 对存储空间有严格限制的环境
    • 需要高度规范化的数据管理场景

两种模型的选择应基于具体业务需求、性能要求和开发资源综合考虑,在大多数数据仓库项目中,星形模型因其简单高效而成为首选方案。

ETL 数据处理流程

数据抽取(Extract)

支持从多种异构数据源获取原始数据:

  • 关系型数据库:MySQL、Oracle、SQL Server等,支持JDBC/ODBC连接方式
  • Hadoop生态系统:HDFS、Hive、HBase等大数据存储系统
  • 结构化文件:CSV、Excel、XML等格式文件
  • 非结构化文件:PDF、Word、日志文件等,支持文本解析和正则表达式提取

典型应用场景:

  1. 定时增量抽取:通过时间戳或增量标识获取新增数据
  2. 全量抽取:首次数据迁移时获取完整数据集
  3. 实时流式抽取:对接Kafka等消息队列获取实时数据
数据清洗(Transform)

提供专业的数据清洗能力:

  1. 自定义清洗函数:

    • 支持Python/Java等语言编写UDF
    • 提供字符串处理、数值转换等常用函数库
    • 示例:手机号格式校验、地址标准化处理
  2. 文件处理能力:

    • 文件编码转换(如GBK转UTF-8)
    • 文件内容过滤(按正则表达式提取关键信息)
    • 文件格式转换(如PDF转TXT)

清洗规则配置:

  • 空值处理策略(填充默认值或丢弃记录)
  • 异常值检测(基于统计规则或业务规则)
  • 数据去重(根据主键或业务键值)
数据转换(Transform)

提供丰富的数据转换方式:

  1. 单表关联:

    • 行转列/列转行
    • 字段拆分与合并
    • 数值计算(如金额单位转换)
  2. 多表关联:

    • 支持Join、Union等SQL标准操作
    • 提供Lookup查找表功能
    • 支持缓慢变化维(SCD)处理
  3. 其他转换方式:

    • 数据聚合(Group By+聚合函数)
    • 窗口函数计算(如移动平均)
    • 自定义业务逻辑转换
数据加载(Load)

支持将处理后的数据加载到多种目标系统:

  1. 关系型数据库加载:

    • 批量插入和更新
    • 支持事务处理
    • 提供upsert(存在则更新)操作
  2. Hadoop加载:

    • 支持HDFS文件写入
    • 支持Hive表数据加载
    • 支持ORC/Parquet等列式存储格式

加载策略:

  • 全量覆盖模式
  • 增量追加模式
  • 合并更新模式
数据质量监控

完善的监控告警体系:

  1. 检查规则配置:

    • 字段级规则:非空检查、格式校验等
    • 记录级规则:业务逻辑校验
    • 统计规则:记录数波动检测
  2. 实时告警机制:

    • 邮件/SMS/企业微信通知
    • 分级告警(警告/严重/致命)
    • 支持自定义告警阈值
  3. 中断式告警功能:

    • 关键错误自动停止任务
    • 提供错误恢复机制
    • 生成详细错误报告

监控指标示例:

  • 数据量波动率
  • 空值率/异常值比例
  • 处理时效性(延迟时间)

OLTP与OLAP系统详解

OLTP (Online Transaction Processing)

在线交易处理系统,是面向业务操作的数据库系统,主要用于日常事务处理。

主要特征

  • 处理大量短小、原子性的交易操作
  • 支持高并发读写
  • 强调数据的一致性和完整性
  • 响应时间通常在毫秒级别

典型应用场景

  • 银行ATM交易处理
  • 电商订单处理系统
  • 航空订票系统
  • 库存管理系统
  • 信用卡交易处理

数据结构特点

  • 采用高度规范化的关系模型
  • 大量使用索引提高查询效率
  • 通常采用行存储方式

OLAP (Online Analytical Processing)

在线分析处理系统,是面向数据分析的数据库系统,主要用于决策支持。

主要特征

  • 处理复杂查询和分析操作
  • 主要面向读操作
  • 强调查询性能和分析能力
  • 响应时间通常在秒到分钟级别

典型应用场景

  • 销售趋势分析
  • 客户行为分析
  • 财务报告生成
  • 市场细分研究
  • 预测建模

数据结构特点

  • 采用星型或雪花型schema
  • 大量使用预计算和聚合
  • 通常采用列存储方式
  • 支持多维数据模型

系统对比

特性OLTPOLAP
主要目的日常业务操作决策支持分析
数据特性当前、详细数据历史、汇总数据
查询类型简单查询复杂分析查询
并发性高并发低并发
数据量相对较小通常较大
更新频率频繁更新批量加载

大数据分析相关的统计基础

基本概念

总体与样本

  • 总体:研究对象的全部个体组成的集合。例如:全国所有大学生的平均身高。
  • 样本:从总体中抽取的部分个体组成的子集。例如:从全国大学生中随机抽取1000人测量身高。
  • 参数:描述总体特征的数值指标(如总体均值μ)。通常是未知的,需要通过样本推断。
  • 统计量:描述样本特征的数值指标(如样本均值x̄)。是已知的,用于估计参数。

变量类型

  • 分类变量:表示类别(如性别、产品类型)
  • 有序变量:有顺序的类别(如满意度等级)
  • 数值变量
    • 离散型(如客户购买次数)
    • 连续型(如温度、收入)

频率与概率

  • 频率:某事件在已观察数据中出现的相对次数
  • 概率:某事件在理论上发生的可能性
  • 关系:当样本量足够大时,频率趋近于概率(大数定律)

数据的概括性度量

集中趋势指标

  1. 众数(Mode):出现次数最多的值

    • 适用性:适用于所有测量尺度的数据
    • 示例:销售数据中最畅销的产品型号
  2. 中位数(Median):将数据排序后位于中间位置的值

    • 计算方法:n为奇数时取第(n+1)/2个值;n为偶数时取中间两个数的平均值
    • 特点:不受极端值影响
  3. 平均数(Mean):所有数值的和除以数量

    • 计算公式:x̄ = (Σx)/n
    • 特点:对极端值敏感
  4. 分位数(Quantile):将数据分为若干等份的点

    • 常用分位数:四分位数(Q1=25%, Q2=50%, Q3=75%)
    • 应用:构建箱线图

离散趋势指标

  1. 极差(Range):最大值与最小值之差

    • 局限性:只考虑两个极端值
  2. 四分位差(IQR):Q3-Q1

    • 优点:消除了极端值影响
    • 应用:识别异常值(通常定义为<Q1-1.5IQR或>Q3+1.5IQR)
  3. 方差(Variance):各数据点与均值差的平方的平均

    • 计算公式:σ² = Σ(x-μ)²/N (总体)
    • 样本方差通常使用n-1作为分母(无偏估计)
  4. 标准差(Standard Deviation):方差的平方根

    • 单位与原数据一致
    • 应用:68-95-99.7规则(正态分布)
  5. 变异系数(CV):标准差与均值的比值

    • 计算公式:CV = σ/μ
    • 特点:无量纲,适用于比较不同量纲数据的离散程度

常见的概率分布

离散型分布

  1. 二项分布(Binomial)

    • 参数:n(试验次数)、p(单次成功概率)
    • PMF:P(X=k) = C(n,k)p^k(1-p)^(n-k)
    • 应用场景:n次独立伯努利试验中的成功次数(如质检抽样)
  2. 泊松分布(Poisson)

    • 参数:λ(单位时间/空间内事件的平均发生次数)
    • PMF:P(X=k) = (λ^k e^-λ)/k!
    • 应用场景:罕见事件计数(如客服电话呼入量)

连续型分布

  1. 正态分布(Normal)

    • 参数:μ(均值)、σ(标准差)
    • PDF:f(x) = (1/√(2πσ²))e^(-(x-μ)²/(2σ²))
    • 特点:对称、钟形曲线
    • 标准正态:μ=0, σ=1
  2. 均匀分布(Uniform)

    • 参数:a(下限)、b(上限)
    • PDF:f(x) = 1/(b-a) (a≤x≤b)
    • 应用:随机数生成
  3. 指数分布(Exponential)

    • 参数:λ(速率参数)
    • PDF:f(x) = λe^(-λx) (x≥0)
    • 应用:等待时间建模(如设备故障间隔)

假设检验

基本流程

  1. 提出原假设(H0)和备择假设(H1)
  2. 选择显著性水平α(通常0.05)
  3. 计算检验统计量
  4. 确定P-value或临界值
  5. 做出统计决策

核心概念

  1. P-value:在原假设为真时,观察到当前或更极端结果的概率

    • P<α:拒绝H0
    • P≥α:不拒绝H0
  2. 两类错误

    • 第一类错误(α):错误拒绝H0(假阳性)
    • 第二类错误(β):错误接受H0(假阴性)
    • 功效(power)=1-β:正确拒绝H0的概率
  3. 置信区间:参数的可能取值范围

    • 95%置信区间:重复抽样时,95%的区间会包含真实参数
    • 计算方法:估计值±临界值×标准误

常见检验类型

  • Z检验(大样本,σ已知)
  • t检验(小样本,σ未知)
  • χ²检验(分类数据)
  • F检验(方差比较)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值