题目描述
代码实现:
class Solution {
public int maxSubArray(int[] nums) {
/*
以num[i] 为结尾的最大子数组和为dp[i]
dp[i]有两种选择,要么和前面相邻子数组连接,形成一个和更大的子数组
要么不与前面的子数组连接,自成一派,自己作为一个子数组。
在这两种选择中择优,就可以计算出最大子数组,而且空间复杂度还有优化空间
*/
int n = nums.length;
if(n == 0) return 0;
int[] dp = new int[n];
// 第一个元素前面没有子数组,前面没有的话直接进行赋值即可
dp[0] = nums[0];
// 状态转移方程
for(int i = 1; i < n; i++){
// 因为i从0开始的话,肯定会出事的
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
}
// 上面的for循环就能找到相应的最大子数组的和,这一点还是很关键的
// 然后通过遍历数组dp以此来得到nums的最大子数组
int res = Integer.MIN_VALUE;
for(int i = 0; i < n; i++){
res = Math.max(res, dp[i]);
}
return res;
}
}
- 使用了一个数组用来每次接收更新以后的前面n个数据的最大和,最后在这个数组中查找即可