AI绘画Stable Diffusion - 功能性LoRA推荐!年龄调整、衣服增减、人物距离调整一键搞定!

大家好,我是画画的小强

AI绘画工具 **Stable Diffusion(SD)**以其强大的图片生成能力被越来越多的爱好者使用,而LoRA技术,作为SD中的一个关键组件,为创作者提供了更多的灵活性和控制力。今天,我们将推荐几种功能性LoRA,看它们如何帮助创作者实现更加精细和个性化的图像生成。

在这里插入图片描述

Age Slider(年龄调整)

Age Slider年龄调整lora可以通过改变lora的权重值可以方便的控制人物年龄。权重值范围在-5—+5之间,权重值越大则人物的年龄就越大。作者推荐值在-1~+4之间。

模型下载: https://civitai.com/models/128417?modelVersionId=143150
注意:如无法下载请看下方扫描获取哦

提示词:

lora:age_slider_v6:3,1girl,solo,smile,short hair,looking at viewer,realistic,hat,upper body,nail polish,grey background,black hair,black headwear,simple background,dress,black dress,grin,collarbone,teeth,sleeveless,bare shoulders,makeup,

不同权重图示:

在这里插入图片描述

Clothing Adjuster(衣服增减)

衣服增减调整lora可以调节所绘制人物衣服多少。通过将LoRA权重从-1调节至+1,可以实现绘制人物衣服的逐步减少。权重设置为+1不建议使用。

模型下载: https://civitai.com/models/88132?modelVersionId=117151

如无法下载,请扫描获取哦

提示词:

lora:ClothingAdjuster3:-1,1girl,solo,looking at viewer,black hair,brown eyes,outdoors,upper body,smile,

不同权重的图示:

在这里插入图片描述

Zoom Slider(距离调整)

通常我们可以通过设置full body(全身)或者upper body(半身)等提示词来控制人物图片的生成,但有时会发现这些提示词生成的图片不太符合预期。这时就可以使用Zoom Slider lora来控制生成画面的远近。权重值范围在-7~7之间,权重值设置的越小人物越接近全身。

模型下载: https://civitai.com/models/114460?modelVersionId=123732
如无法下载,请看下方扫描获取哦

提示词:

1girl,solo,realistic,blonde hair,long hair,blue eyes,looking at viewer,water,lips,white t-shirt,sunlight,lora:zoom_slider_v1:-7,

不同权重的图示:

在这里插入图片描述

功能性LoRA模型在Stable Diffusion中的应用,不仅提高了创作效率,也为艺术创作带来了更多可能性,后面会继续推荐有意思的LoRA。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Stable-Diffusion WebUI 使用 LoRA 模型训练和部署 #### 安装与配置环境 为了使 Stable-Diffusion WebUI 支持 LoRA (Low-Rank Adaptation),需先确保已正确安装并配置好基础环境。这通常意味着已经成功设置了 `stable-diffusion-webui` 并能够正常运行[^1]。 #### 获取 LoRA 插件和支持文件 对于希望利用 LoRA 技术来增强图像生成效果的用户来说,获取相应的支持文件至关重要。这些资源可以从 Hugging Face 或其他可信平台获得。具体而言: - 访问指定页面下载所需的 `.pth` 文件,并将其放置于适当位置,如 `~/stable-diffusion-webui/models/Lora/` 目录下[^2]。 #### 配置 WebUI 以启用 LoRA 功能 为了让 WebUI 正确识别并应用 LoRA 模型,在启动时应加入特定命令行参数。例如,可以通过添加 `--lora-dir ./models/Lora` 参数指向存储有 LoRA 权重的位置[^3]。 ```bash python webui.py --lora-dir ./models/Lora ``` 此外,还需确认界面设置中启用了相关选项以便加载所选模型作为默认项之一。 #### 测试与调试 完成上述步骤之后,建议通过浏览器开发者工具(按 F12 打开)监控 API 请求过程中的数据交换情况,从而验证整个流程是否顺畅工作。此时应注意检查控制台输出的信息,特别是当遇到问题时可以据此排查错误原因。 #### 实际操作指南 实际使用过程中,用户可以根据需求调整正负向提示词以及其他高级设定,充分利用 LoRA 提供的功能特性。值得注意的是,虽然这里主要讨论了如何集成现有 LoRA 模型,但对于有兴趣进一步探索该领域的人来说,了解其背后的原理以及尝试自行训练定制化版本也是非常有益的经历。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值