矩阵论(课上的笔记)

一、线性空间和线性变换

请添加图片描述
矩阵的初等变换就是一种映射,例如矩阵初等变换符合:(AB)C = A(BC),但不符合AB = BA,证毕

1.1 线性空间:

在这里插入图片描述
如果满足上述八条公理,则称V是K上的线性空间,V中的元素称为向量
线性代数中的n维向量作为V,是一种特殊的线性空间,是抽象线性空间的具体化。
在这里插入图片描述
上述是6个常用的线性空间例子,
第一个若F取R,则V= Rn,V表示n维的向量。
第二个F取R,则V = Rnxn,表示V是有n维矩阵构成的向量。
第三个F[x]表示系数是F域中的多项式
第四个是x的次方小于n的系数是F域中的多项式,其实是第三个的一部分。
第五个是第六个不过多解释了
判断是否为线性空间,首先判断加法和数乘后结果是否还在线性空间中,然后再去判断那8条性质
在这里插入图片描述
第7个由于数乘不满足封闭性,所以不是线性空间
第8个由于普通的数乘不满足封闭性所以不是线性空间
第九个因为对加法和乘法进行了重定义,重定义后的运算满足封闭性和那8条性质,所以是线性空间
第九个例子 告诉我们,对于一个V和F,不同的运算符重定义决定了他是否是线性空间

1.2 线性空间的性质

在这里插入图片描述
零元素唯一:上述证明运用到了一些公理,首先用到了0元公理,然后运用了交换律
负元素唯一:首先用了有零元公理,然后是有负元公里,之后就是结合律之类的。

在这里插入图片描述
同时线性空间中还满足很多线性代数里的向量的性质。
在这里插入图片描述
例如第一个例子,我们把这四个矩阵叫做这个线性空间的矩阵单位,可以通过定义法判定他们是线性无关的。
第二个例子也可以通过定义法证明的线性无关。

1.3 基与维数:

在这里插入图片描述
一个矩阵的维数其实就是他的rank
在这里插入图片描述
零空间,如果一个向量小组中有0向量,则线性相关,所以他不满足基的定义
对于第二个,因为他1,x,x2等等为线性无关,所以是无穷。
我们一般考虑有限维的空间
1.举一个n维空间的例子:
在这里插入图片描述
我们可以取e1到en个线性无关的向量,所以称这个向量空间是n维向量空间

2.举一个矩阵空间的例子

在这里插入图片描述
同样的,我们可以判断上面的维数是4。

在这里插入图片描述
推广到一般形式,上述首先选取了i x j个矩阵单位,所以可以判断这个矩阵空间是mn维的
3.多项式维度
在这里插入图片描述
上面找到了一组基,n个无关的向量,故维度是n
4.V是复数集
在这里插入图片描述
第4个例子中可以找到 1和i作为基,所以维度是2
第2个例子中只能找到1作为他的基,所以维度是1
5.刚刚重载运算符的例子
在这里插入图片描述
我们对运算符重载后,1就是他的0元素,所以基不能有1,可以用2当作他的一组基,所以维度是1
在这里插入图片描述
任取a1-an线性无关,只要证明任何η使得η和a1-an线性相关即可证明η可以有a1-an线性表示,又因为n维向量空间n+1个向量线性相关,所以证毕。
在这里插入图片描述
有了刚刚证出来的定理,以后证明给出的一组向量是否能构成基就不需要用定义式去证明了,定义式需要先证明线性无关,然后在证明可以线性表示,比较麻烦,这是我们可以先证明这一组向量线性无关,然后加上知道维度是3,所以可以证明它一组基。

1.4 坐标

在这里插入图片描述
下面举两个求坐标的例子
在这里插入图片描述
注意:我们说坐标的概念是在基给定的基础上说的
很容易让我们联想到三维空间下的坐标概念,也是针对一组固定基来说的。
在这里插入图片描述
在这里插入图片描述
这一点很重要,在不同基下,他的坐标是不同的。
在这里插入图片描述
基的意义在于连接了抽象空间和代数运算,由基可以求出坐标,这样就把抽象的线性空间,转换成了一组n维向量,进而可以进行代数运算。例如:我给将二维向量这个抽象概念赋予坐标,即可对其进行代数加减和其他运算。
在这里插入图片描述
上述标明了,为什么要引入基这个概念,可以将线性空间的性质由我们熟悉的Fn向量来进行表示。
通过上面定理三,我们又多了一种判断线性空间中线性相关无关的方法,不再仅仅只能用定义来解方程判断了,可以直接用坐标来判断。
在这里插入图片描述
上图我们可以直接提取三个坐标,然后用拼成矩阵来判断线性相关无关。
在这里插入图片描述
上图也是一个很好的例子,我们首先找一组基,将抽象的东西转化成线代可以操作的向量,然后再去实现一些操作。

在这里插入图片描述

例题(求给定基下的坐标):
在这里插入图片描述
解方程即可:
在这里插入图片描述

1.3 基变换(可以通过基变换公式求出过渡矩阵):

在这里插入图片描述
过渡矩阵A是可逆矩阵:
在这里插入图片描述
在这里插入图片描述
上面这个例题,先找出这个线性空间的一组基,然后把架子搭起来,过度矩阵一列一列的写。

过渡矩阵性质
在这里插入图片描述

例题:
在这里插入图片描述
解(采用中介法可以快速求解过渡矩阵):
在这里插入图片描述
例如画红框部分,是用E1-E4进行红框部分线性组合得到的A1,相比去解四个方程组,中介法更为快捷。

1.4坐标变换:

在这里插入图片描述

例题
在这里插入图片描述

在这里插入图片描述
设基1下的坐标为一颗塞隆1-4,基2下的坐标为以他1-4。
在这里插入图片描述
可以求出一组基下的坐标后通过过度矩阵求出另一组基下的坐标,就不用去解一次方程了

坐标变换例题:

在这里插入图片描述
我通常喜欢将坐标变换类被到变换矩阵,坐标系由原点变换到某个位置,空间中某点的坐标也会变换,关系就是变换矩阵乘原先的坐标

1.5 子空间

1.5.1 子空间定义

在这里插入图片描述
定义中注意两点,首先子集需要非空,并且自己满足原始线性空间中的线性运算封闭,例如下面这个就不是子空间:
在这里插入图片描述
虽然W是V的子集,但是W并不满足V中的线性运算。

1.5.2 子空间的判定

在这里插入图片描述
W只需要满足V中的加法和数乘运算,即可说明W是V的子空间。另外零向量和V本身是V的平凡子空间
在这里插入图片描述
上述例题我们可以有两个角度去解释
角度一
V1若取(1/3, 0,0)这个向量,数乘2后为(2/3,0,0),带入V1中并不满足,所以V1不是V的线性子空间。
V2由于是齐次线性方程组,所以他的解的任意线性组合还是他的解,所以是线性子空间
角度二
V1和V2都是平面,V1没过原点,V2过了,所以线性子空间都是经过远点的,同样可以类比在R2中,某直线没过原点,所以不是R2的线性子空间,过了原点才是R2的线性子空间。

1.5.3 两类重要的子空间

在这里插入图片描述
V里的向量是η,属于Fn,η需要满足Aη=θ这个齐次线性方程组,因为Ax = θ的解空间是Fn,所以V是包含于Ax = θ解空间,又因为V是满足齐次线性方程组,所以V是Ax = θ的子空间(解空间),且V的基础解系个数是n - R(A),所以维度也是n - R(A)
在这里插入图片描述
上述W中元素是V中的α1-αs的向量线性组合,所以肯定是满足线性封闭。

1.5.4 生成子空间基和维数的确定方法

在这里插入图片描述
证明αj在W中很简单,除了αj全取0即可。
在这里插入图片描述
上述给出了生成子空间基的确定方法,和维数的确定方法。
在这里插入图片描述
在这里插入图片描述
上面这个例题需要找到F2X2里的一组基,求出ABCD向量的坐标后,我们可以利用坐标来找到极大线性无关组。
在这里插入图片描述
上图是这个题子空间的证明方法,需要正面加法和数乘的封闭性,我们取Z1和Z2属于W,然后验证Z1+Z2是否满足W中限定元素的性质,可证明满足,数乘同样比较好证明。

1.6 子空间的交与和

在这里插入图片描述
上述是x轴和y轴向量的并集,可以看出不满足加法封闭性,所以并集并不是F2子空间。

为了弥补并集的缺憾,引入了和集
在这里插入图片描述
交集和并集的区别
在这里插入图片描述
并集属于和集,和集一般比并集来的大。
因为V1包含于V1 + V2中,例如在V1中去η1,V2中取θ零元素,那么η1 = η1 + θ。
V2也同理

在这里插入图片描述
V1和V2都是生成子空间,如何求V1+V2和空间的基和维数呢?通过上面定理可知V1+V2生成元就是V1和V2的生成元集合,所以只需要求α1-βt的极大线性无关组即可知道基。

1.7 子空间的直和

在这里插入图片描述

1.7.1 判断和空间是否是直和方法

使用下方两个推论:
在这里插入图片描述
在这里插入图片描述

1.8 线性映射

1.8.1 映射

在这里插入图片描述
在这里插入图片描述

1.8.2 线性映射

线性映射的定义(需要满足齐次性和可加性):
在这里插入图片描述
在这里插入图片描述
下面举几个线性映射的例子:
在这里插入图片描述

1.8.3 线性变换

下面举一个常值映射的例子,一般来说常值映射不一定是线性变换,因为若η0为非零向量,则这个映射不满足齐次性,只有在η0为θ向量(零向量)时才是线性变换。
在这里插入图片描述
平移运算也不一定是线性变换,因为只有在η0为零向量的时候才为线性变换,
在这里插入图片描述
下面的零变换(V中任意元素通过变换后为零向量),和恒等变换均为线性变换。
在这里插入图片描述
在这里插入图片描述

1.8.4 线性映射的性质

在这里插入图片描述
注意:在这里插入图片描述
因为当是零变换时,象始终都是线性相关的,当原象线性无关的时候,并不能推出象是线性无关的。
在这里插入图片描述
这里给计算值域的基和维数提供了一种方法,利用生成子空间性质即可。
在这里插入图片描述
上述4,5可以刻画线性变换的很多性质。

1.8.5 求值域的基和维数,核子空间基和维数

值域:象构成的集合
核子空间:象为θ(零向量)时的集合
定义法
在这里插入图片描述
所以值域基和维数是2,核子空间的基和维数是1.
在这里插入图片描述
在这里插入图片描述
可以发现其值域的维数加上核子空间的维数是等于原空间维数N。这里并不是巧合。

1.8.6 线性空间的运算

数乘运算
在这里插入图片描述
加法运算
在这里插入图片描述
乘法运算
在这里插入图片描述

1.8.7 线性变换的运算性质

满足乘法结合律
在这里插入图片描述
下面是左分配律和右分配律(验证方法同结合律):
在这里插入图片描述

1.8.8 线性映射(变换矩阵)

引入:
在这里插入图片描述
所以我们接下来需要考虑两个问题:第一是变换矩阵如何求解,第二是如何利用变换矩阵来构建象和原象之间的表达式呢?

第一问题:变换矩阵如何求解
在这里插入图片描述
线性映射就取一组基偶,线性变换就取一组基。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第二个问题:如何利用变换矩阵来构建象和原象之间的表达式呢?
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上述特殊情况,推出了我们的相似。
所以线性变换矩阵在不同的基下是相似的

上述方法给我们在求线性变换矩阵提供了一个新的方法
法一:利用定义求变换矩阵(需要解很多方程组,比较麻烦):
在这里插入图片描述
法二:利用线性变换在不同基下的过渡矩阵关系来求:
先在F[3]中找出一组最简单的基,然后求其变换矩阵A,然后求出两个基之间的过渡矩阵P,利用上述定理可以球的B = P逆AP。
在这里插入图片描述
我们说线性变换就是矩阵,因为有如下几个重要定理!!!
在这里插入图片描述

1.8.9 线性映射的值域及核子空间

判断f是满射还是单射的快速方法
在这里插入图片描述
一个线性映射给出来之后,用下面方法求值域的基和维数
在这里插入图片描述
核子空间的基和维数计算:
首先从核子空间中元素都满足什么条件出发,f(η)如果是零向量,那么他的坐标也会是零向量,解得齐次方程组。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
例题:
在这里插入图片描述
在这里插入图片描述
求线性变换的值域和核子空间的关键在于找一组基,然后求变换矩阵,通过初等行变换来求值域和核子空间的基和维数。

1.8.10 不变子空间

在这里插入图片描述
V中的W映射到V后还要在W中,不能到W外面去,这样才叫不变子空间。

1.9 内积空间

在这里插入图片描述
注意第四条性质,如果F=R在欧几里得空间时,这条性质是对称性,如果在酉空间,则这条性质是共轭对称性
在这里插入图片描述
上面举了4个内积得例子,1-3是欧几里得空间,4是酉空间得,我们称1和4是标准内积,如果不特别说明,内积都是标准内积。
在这里插入图片描述
注意第二条,k在第二个书上提出来的时候,需要加共轭,和定义中的区分一下。
在这里插入图片描述

在这里插入图片描述

1.9.1 求标准正交基

在这里插入图片描述
在这里插入图片描述

2.矩阵相似三角形

2.1 特征值和特征向量

定义:

在这里插入图片描述
一个特殊的例题:
在这里插入图片描述
一般的解法:
在这里插入图片描述
我们想要求线性变换的特征值特征向量,可以通过基转化为坐标的特征值特征向量,因为f(η)的坐标是AX,η的坐标是X,所以我们只需要考虑变换矩阵A的特征值特征向量即可。
在这里插入图片描述
在这里插入图片描述

特征多项式:
在这里插入图片描述

2.2 矩阵的迹

在这里插入图片描述

2.3 判断特征值的另一种办法:化零多项式

如果矩阵的特征多项式我们不知道,或者很难算,就可以通过化零多项式来求
在这里插入图片描述

2.4 Hamilton-Cayley定理

在这里插入图片描述

上述定理有利于求A的高次方的题型:
在这里插入图片描述

2.5 最小多项式

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
最小多项式求法
在这里插入图片描述

2.6 线性变换可相似对角化问题

首先来复习一下线代中矩阵可相似对角化的条件:
在这里插入图片描述

2.7 Jordan 标准形

jordan标准型的引入:
在这里插入图片描述
在这里插入图片描述
当jordan块儿为1阶时,形成了一个对角阵的jordan矩阵,我们之前讨论的其实就是这种对角阵。
在这里插入图片描述
定理1:若J是A的jordan标准型,那么交换J中jordan块的次序形成的矩阵K同样也是A的jordan标准型。
在这里插入图片描述
定理2:我们可以通过它来求jordan标准型
在这里插入图片描述
例题:
在这里插入图片描述
在这里插入图片描述

3.范数

范数定义:
在这里插入图片描述
在这里插入图片描述
我们通常将求模运算默认为是一个范数。
在这里插入图片描述
上面举了三个基本的范数例子,其中二范数其实就是一个向量的模长。
在这里插入图片描述
第一个是我们上一张图片的抽象。

3.1 矩阵m范数

在这里插入图片描述
矩阵的二范数又称frobenius范数,很重要,他还有一个很重要的性质,那就是酉变换下不变。

3.2 范数相容性

在这里插入图片描述
在这里插入图片描述

3.3 算子范数

在这里插入图片描述
算子范数一定是相容范数。
在这里插入图片描述
下面将介绍几个快速求算子范数方法:

在这里插入图片描述
在这里插入图片描述
所以算子二范数,谱范数都很重要,其中谱范数种的ρ()表示求括号内矩阵的最大特征值。

3.4 矩阵幂级数预备知识

在这里插入图片描述
上述说明矩阵按坐标收敛和按范数收敛是等价的。
在这里插入图片描述

上述为序列A的k次方收敛于0的范数表现形式,可以利用相容性得到不等式,只需要A的范数小于1即可。
在这里插入图片描述
定理二是谱半径的角度,那么范数和谱半径也会有联系,所以有了定理三,定理三是从特征值和特征向量出发,两边同时取范数,然后利用相容性得到。
在这里插入图片描述
在这里插入图片描述
上面三种函数收敛半径都是正无穷。

3.5 幂级数和矩阵收敛的判定

矩阵收敛条件:
当ρ(A)< 1时,A矩阵收敛
当ρ(A)= 1时,A矩阵可能收敛也可能发散
当ρ(B)> 1时,A矩阵发散
快捷求法:A的收敛矩阵的充分条件是只要有一种矩阵范数,使得||A|| < 1。
幂级数收敛条件:
1.特殊的幂级数(neumann级数),先判断A是否为收敛矩阵,然后用(I - A)逆来算和
2.一般幂级数,幂级数收敛半径为r,r = an+1 / an
当ρ(A)< r ,级数收敛
当ρ(A)= r时,级数可能收敛也可能发散
当ρ(A)> r时,级数发散。

3.6 jordan块求矩阵的值

在这里插入图片描述
在这里插入图片描述
说明这个公式对多项式函数成立,同时对任意函数都成立。
在这里插入图片描述
在这里插入图片描述
步骤和上述相同。
在这里插入图片描述
在这里插入图片描述
对于任意矩阵A,要计算f(A)的话,只需要计算他的jordan标准型的f(),然后跟P矩阵运算即可。
由于求P过于麻烦,所以下面将介绍简便算法。
在这里插入图片描述
在这里插入图片描述
有了上述定理,我们证明上面的例子就很容易了。

3.7 待定系数法求矩阵的值

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
总体步骤就是先求出矩阵A的jordan标准型,然后去求最小多项式,我们的g(x)最高项系数就是最小多项式最高次减一,然后利用待定系数法去求即可。
解线性方程组需要用到下面一些矩阵函数性质
在这里插入图片描述

  • 3
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 北航矩阵论试题pdf是北航(北京航空航天大学)教授或提供的一份关于矩阵论的试题集,以PDF格式提供给学生和其他有兴趣的人参考和学习。 矩阵论是数学中一个重要的分支,涉及到矩阵的运算、性质和应用等方面。矩阵在各个学科和领域中都有广泛的应用,如线性代数、物理学、计算机科学等。因此,对于学习和掌握矩阵论知识是非常重要的。 北航矩阵论试题pdf可能包括一系列的习题和问题,涉及到矩阵的基本概念、矩阵的运算、矩阵的特征值和特征向量等内容。通过解答这些试题,可以帮助学生巩固和理解矩阵论的相关知识,培养分析和解决问题的能力。 对于有兴趣或需要学习矩阵论的人来说,北航矩阵论试题pdf是一个很好的学习资料。通过仔细阅读和理解试题,思考和解答其中的问题,可以提高对矩阵论知识的理解和应用能力。 总之,北航矩阵论试题pdf是北航提供的关于矩阵论的试题集,通过解答这些试题,可以提高对矩阵论知识的理解和应用能力,对于学习和掌握矩阵论知识有一定的帮助。 ### 回答2: 北航矩阵论试题 pdf 是指北京航空航天大学在矩阵论方面的考试试题以及相关答案文档,一般以 PDF 格式进行发布和传播。矩阵论是数学中的一个重要分支,研究矩阵的性质、运算和应用等。对于北航的学生而言,掌握矩阵论知识是他们专业学习的一部分。 北航矩阵论试题 pdf 提供了学生们在备考期间进行复习和练习的材料。学生可以通过阅读试题了解北航矩阵论课程的考查重点以及题型分布,从而有针对性地进行学习。试题中的相关答案文档也为学生提供了自我检测和纠错的机会,帮助他们更好地理解和掌握矩阵论知识。 通过北航矩阵论试题 pdf 的学习,学生们可以提高解决矩阵相关问题的能力,增强他们的逻辑思维和推理能力。同时,这也为他们将来在工程实践和科学研究中应用矩阵论提供了坚实的理论基础。 总之,北航矩阵论试题 pdf 是北航学生在学习矩阵论课程过程中重要的学习资料。它通过提供试题和相关答案文档,帮助学生加深理解矩阵论知识、提高解题能力,为他们未来的学习和应用打下坚实的基础。 ### 回答3: 北航矩阵论试题PDF是北航发布的一份试题材料,主要用于学生复习和备考矩阵论课程。该PDF文件包含了一系列矩阵论的试题,涵盖了该课程的各个知识点和重要内容。 首先,矩阵论线性代数的一个分支,是现代数学领域中非常重要的一个研究方向。它主要研究矩阵的性质与运算,以及与线性方程组、线性映射等数学对象之间的关系。在许多领域中,如物理学、工程学、计算机科学等都会广泛应用到矩阵论的知识。 北航矩阵论试题PDF提供了一些典型的试题,通过解答这些试题,学生们可以巩固并加深对矩阵论知识的理解。试题设计了不同难度的问题,涉及到矩阵的基本操作、特征值与特征向量、矩阵的相似、矩阵的分解等知识点。通过学生对试题的分析与解答,不仅可以帮助他们检验自己对知识的掌握程度,还可以培养他们的问题解决和推理能力。 在准备矩阵论考试的过程中,学生可以从北航矩阵论试题PDF中选择合适的试题进行针对性的练习和复习。同时,可以通过对试题的讲解与探讨,加深对矩阵论知识的理解,掌握解题技巧,提高解题效率。此外,学生还可以通过对试题的反复练习,强化对矩阵论知识的记忆,提升应对考试的信心和能力。 总之,北航矩阵论试题PDF为学生提供了一个重要的复习工具,通过解答试题,学生可以更好地掌握矩阵论知识,提高考试成绩,为未来的学习和研究打下坚实的基础。同时,对于对矩阵论感兴趣的人而言,北航矩阵论试题PDF也是一个宝贵的学习资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值